
imatest.com http://www.imatest.com/docs/it_dll_instructions/

How Imatest IT/DLL works

Imatest IT/DLL
(Industrial Testing DLL;
formerly API/DLL) is a
library that allows
developers to access
Imatest‘s powerful
image quality analysis
tools via calls to
functions residing in a
Dynamic Link Library.
At the present time (in
Imatest 3.9) it supports
calls from C, C++ and
Matlab (pCode).
Support for .NET, C-
Sharp, and LabVIEW
is under development.

DLL modules perform
the same calculations
as the corresponding
GUI-based Imatest
Master modules. Eight
modules are available:

Imatest IT/DLL is a
complete package that
includes the module
libraries, support
documentation
including detailed
function definitions and
sample code, and
basic programs that
interface to modules.

Although Imatest
IT/DLL operates
independently of
Imatest Master, we
strongly recommend
that IT/DLL users have
at least one Master
installation on site.

Imatest - IT-DLL Instructions

http://www.imatest.com/docs/it_dll_instructions/
http://store.imatest.com/imatest-industrial-testing-edition.html

When Imatest IT/DLL
is linked into a
program, you can call
functions in the library
to perform Imatest
image quality
analyses. Currently,
Imatest IT/DLL
requires separate
image files and returns
limited results directly
as well as CSV and
XML files and images.
Though certain library
tie-ins, like the
SFR_direct routine,
allow for passing raw
image data into
Imatest routines for
analysis.

Comparison of Imatest IT/EXE and DLL

EXE DLL

Called from any program (C++,
LabVIEW, etc.) using a DOS
commend

Called directly from C, C++, or Matlab (using pCode).
Support for .NET, C-Sharp, and LabVIEW is under
development.

Input includes an INI control file
and an image file (raw or
processed).

Input includes an INI control file. The input image (raw or
processed) may be read from a file or directly passed from
the calling program (much faster).

Output to CSV, JSON, and XML
files, and (optionally) to figure
image files.

Output to all files supported by EXE. In addition, variables
can be returned to the calling program. Most of the key
results included in the CSV files can be returned directly
using a JSON object.

Slow on first run because the
Matlab Runtime library has to be
loaded and unpacked. Faster on
succeeding runs.

Generally faster, especially with direct image passing.

Installing Imatest IT/DLL

Windows Dynamic Link Library (DLL) files

http://json.org/

Imatest IT consists of multiple libraries that contain function sets based on Imatest modules.. These are
included in the following library suffixes:

imatest_sfr Measure MTF and related results from slanted edges. If Auto ROI
refinement is set, some jitter in region location is tolerated.

imatest_sfrplus Measure MTF, Lateral Chromatic Aberration, distortion, tonal
response, and much more using Imatest’s highly-automated
SFRplus chart.

imatest_distortion Measure distortion using a grid or checkerboard pattern.

imatest_uniformity Measure image uniformity, color shading, hot/dead pixels from a
flat field image.

imatest_colorcheck Measure color accuracy, noise, tonal response, and more from an
X-Rite Colorchecker.

imatest_stepchart Measure tonal response, gamma, and noise, and more from a
grayscale stepchart.

imatest_blemish Measure visually-significant blemishes from a flat field image.

imatest_dotpattern Measure distortion and Lateral Chromatic Aberration from a dot
grid pattern (I3A CPIQ-compliant)

imatest_library (Universal library contains all of the above modules)

C Header and Library Files:

Imatest IT/DLL includes C header and libraries that you can use to link to Imatest IT functions. Header
files contain function definitions, and the corresponding function in the source file is used to link into the
Imatest function that lives inside of the DLL file. The C functions are located in the ‘c’ subfolder of the
corresponding IT/DLL module. For questions about function definitions inside of the header file, please
write support@imatest.com.

C++ Header and Source DLL Files:

Imatest IT/DLL includes C++ header and source files that you can use to link to Imatest IT functions.
Header files contain function definitions, and the corresponding function in the source file is used to link

http://www.imatest.com/docs/sfr_instructions.html
http://www.imatest.com/docs/sfrplus_instructions/
http://www.imatest.com/docs/distortion
http://www.imatest.com/docs/lightfall
http://www.imatest.com/docs/colorcheck
http://www.imatest.com/docs/q13
http://www.imatest.com/docs/blemish
http://www.imatest.com/docs/dot-pattern/
https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=support@imatest.com

into the Imatest function that lives inside of the DLL file. The C++ libraries and corresponding files are
located in the ‘cpp’ subfolder of the corresponding IT/DLL module. For questions about function
definitions inside of the header file, please write support@imatest.com.

Matlab pCode:

Imatest IT DLL SDK also provides Matlab scripts in the form of obfuscated pCode which can be run
directly from the Matlab command line. The directories containing pCode can be added to your matlab
path and then are called using the instructions for executing Matlab pCode, see the IT DLL SDK
documentation for more information.

MATLAB and Image Files:

Imatest IT/DLL also comes with the Matlab Compiler Runtime Libraries. More information can be found
at the MathWorks website or below. The package also contains PNG format image files, which are
placed on Imatest Library generated graphics. The /images folder should be placed in the run time
directory of your program to avoid errors when trying to display Imatest generated graphics.

How to build an executable utilizing Imatest IT libraries:

1. Be sure to install that Matlab Compiler Runtime Library, which can be downloaded from
http://www.imatest.com/packages/MCRInstaller.exe

2. Have imatest_<libname>.h in the project directory. Libname is for the IT library you wish to
utilize. It will be sfr, sfrplus, etc.

3. Update your VC project with correct paths to <MATLABROOT>\extern\include and
<MATLABROOT>\extern\lib\win32\microsoft\

4. Your project will be ready to build.

.dll files and the images folder for plotting Imatest graphs must be in the same location the project is run
from (or specified in project), .

Path: You should add folders to the system path if they are not present.

Open the Control Panel.

Double-click on System in Windows XP. In Windows 7, click on System and Security, then
System.

Click on the Advanced tab in the System Properties window (Advanced system settings
in Vista/7).

Click on s. If Matlab is installed on your system, see the Path conflicts box, below.

Select PATH in the User variables… window.

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=support@imatest.com
http://www.mathworks.com/help/toolbox/compiler/bsl9eor.html#bskp1yb
http://www.imatest.com/packages/MCRInstaller.exe

Click on.

Check to see if the folders listed below are included in the Variable value field for Path. (Note:
the Edit window is annoyingly tiny and can’t be resized. You may find it useful to copy the contents
by clicking control-A, control-C, then pasting it into a text editor.) See explanation of
%ProgramFiles%, below.

Before Imatest 3.6:

 ; %ProgramFiles%\Imatest; %ProgramFiles%\Imatest\bin\win32;
%ProgramFiles%\Imatest\toolbox\matlab

Imatest 3.8+ (The IT-DLL folder represents the folder where DLL is installed; it might be different
in your installation):

 ; “%ProgramFiles%\Imatest\IT-DLL; %ProgramFiles%\MATLAB\MATLAB Compiler
Runtime\v714\runtime\win32;
%ProgramFiles%\MATLAB\MATLAB Compiler Runtime\v714″

If they are not there, add them to the Variable value field. (You may copy and paste.)

%ProgramFiles% is an environment variable that represents the system default program
installation folder in Windows XP and 32-bit Vista/7 installations. Use %ProgramFiles(x86)%
for 64-bit Vista/7. %ProgramFiles% is equivalent to C:\Program Files in 32-bit English-language
installations. These folder have different names in non-English installations, for example,
%ProgramFiles% is C:\Programme in Deutsch. %ProgramFiles% and %ProgramFiles(x86)%
should be consistent for all languages. Alternatively, you may use the actual folder names.

 ; C:\Program Files\Imatest\IT-EXE; C:\Program Files\MATLAB\MATLAB Compiler
Runtime\v714\runtime\win32;
C:\Program Files\MATLAB\MATLAB Compiler Runtime\v714″ (English-only)

After you add the folders, be sure the Path list is well-formatted— that it consists of proper folder
names separated by semicolons (;).

Click … to close the System window.

Path conflicts

If a different version of Matlab from the one used for Imatest (6.5.1 prior to version 3.6) has been
installed on your system, you may experience a path conflict that causes an error message similar
to the message below— or Imatest IT/EXE may simply fail to run, without returning an error
message.

X The procedure entry point svDoubleSclarRemW
could not be
 be located in the dynamic link library
libmwservices.dll

If you receive such a message, you can try two solutions.

1. Alter the Path environment variable in System variables, located below User variables in the
Environment Variables window. Be sure that the folders listed above appear before the similar
folders for the installed version of Matlab. This may involve some careful copying and pasting. Be
sure to check the path carefully before you click OK.

2. Initiate IT/EXE programs using the second method shown below: call a DOS BAT file, which
sets the path and calls the command line. (Do this instead of directly calling the command line.)
This often resolves conflicts.

Setting up IT/DLL, using Imatest Master and configuring the
imatest.ini file.

There are two methods for configuring the settings used by Imatest for analyzing images.

Specify the input keys directly into the function when it is called.

Utilize Imatest master and configure the imatest.ini file, which the Imatest libraries will use by
default. This is the method that will be discussed here.

For information on specifying your own control parameters to Imatest Libraries, see the sections below.

To setup your testing environment using Imatest Master:

Set up the test system (lights, camera, etc.) and photograph a test chart lighted and framed as it would
be in the actual tests.

Save the image in a standard file format. It should have the same pixel count as the actual test images.

Analyze the image using (GUI-based) Imatest Master.

When the settings are correct— when the ROI (region of interest), the calculation details, and the output
files and folder locations are what you need for production— press Save settings… (or Settings, Save
Settings…) in the Imatest main window. This allows you to save the control information for Imatest
IT/SDK in a named .INI file, which can be viewed and edited with any standard text editor. Be sure to
save it in a convenient, accessible folder. The contents of .ini files are largely self-explanatory. Here is a
sample.

http://www.imatest.com/docs/it_exe_instructions/#dos
http://www.imatest.com/docs/it_exe_instructions/#dos

[sfr]
nht_save = 2052
nroi = 2
nwid_save = 3076
roi_mult = 1606 931 1735 1149;334 1693 466 1912
aper =
CA = Min
camera =
cyclesper = Max
cyclesper_value = 1
foclth =
gamma = 0.5

The INI file is divided into sections that start with a bracketed name. [sfr], [q13], [colorcheck],
[distortion], [uniformity] are the sections for the five programs that will eventually comprise IT/SDK. Of
the remaining sections, only [api] (described below) affects IT/SDK operation.

INI file: more detail

An Imatest INI Reference that contains a list of INI file contents as well as advice on usage is under
development. It should be largely complete by mid-January, 2012.

General settings Press Settings, IT options in the Imatest Master main window to open a dialog box
that sets options that only affect IT programs— they do not affect regular Imatest operation. These
options are written into the [api] section of imatest.ini.

Checking Always save then
delete figures makes sure all
figures are closed at the end of
the run, no matter what the other
settings indicate.

Checking Never display
progress bars and warning
messages disables these
graphic displays. These settings
affect the contents of the
following lines in the INI file.

http://www.imatest.com/docs/imatest-ini-reference/

[api]
nomsg = 1
savedel = 1

These lines can be edited using any text editor or the INI File Editor; the IT Options box is merely a
convenience. Certain other options in the [imatest] section may be of interest to IT users.

[imatest]
readexif = 1 (Reads EXIF data from JPEG images when set to 1; readexif = 0 turns
off EXIF read.)

Figures The INI control determines which figures are generated and saved. Any figures that aren’t
needed they should be turned off for speed. Most are set to either Min (figure off) or Max (figure on), but
some (noted in the table below), are set to 0 (figure off) or a number >= 1 (figure on, depending on
conditions). These parameters can be set using a text editor, but it’s usually more convenient to
uncheck the appropriate boxes in the Imatest Master input dialog box prior to saving the INI file.

Options specified inside the configuration .ini file.
These settings will eventually be able to be configured by function calls into the SDK library.

[Section]
(module)

Plot
name

Plot or CSV/XML file save_file_list
index

[sfr] cyclesper MTF in cycles/(pixel or distance) 1

 LWPH MTF in LW/PH 2

 CA Chromatic Aberration 3

 shannon Shannon capacity 3

 CSV output file (detailed results) 6

 XML output file (detailed results) 7

 SFR_cypx.csv (summary with Cycles/pixel) 4

 SFR_lwph.csv (summary with LW/PH) 5

http://www.imatest.com/docs/functional-interface/#func_editor

[sqf] (affects
SFR,
SFRplus)

SQF SQF (Subjective Quality Factor)

SQF is in its own section, but affects SFR.

8 (in [sfr])

[q13]
(Stepchart)

pltpix Patch levels and noise (First figure) 1

 pltnoise Density response, noise, Dynamic range
(Second figure)

2

 pltallch Density response details (all colors) (Third
figure)

3

 CSV output file (detailed results) 4

 XML output file (detailed results) 6

[colorcheck] pltones Grayscale tonal response and noise (First
figure)

1

 pltnoise Noise detail (Second figure) 2

 pltaberr a*b* error plot (Third figure) 3

 pltcolor Color analysis (Fourth figure) 4

 CSV output file (detailed results) 5

 XML output file (detailed results) 6

[distortion] distfig Distortion figure (0 or 1) 1

 dispcorr Corrected image

(if 1, displays if cropped; if 2, always
displays)

2

 outs Intersection point figure (0 or 1) 3

 CSV output file (detailed results) 4

 XML output file (detailed results) 5

[uniformity]
(Light Falloff)

contour Light falloff contour plots (pixels and f-stop)

(0 or 1)

1 (pixels)

2 (f-stop)

 shading Color shading plot (0 or 1) 3

 detail Noise detail plot 4

 CSV output file (detailed results) 5

 XML output file (detailed results) 6

The rightmost column in the above table is the index of
array save_file_list, which is included in each module’s
section ([sfr], [sfrplus], [q13], [colorcheck], [distortion],
[uniformity], [blemish], and [dot]). This index indicates
which output figures and files to save. It is generated by the
Save dialog box (shown on the right for SFR; Note that the
order of the indices may differ from the figure.) For
example,

[SFR] …
save_file_list = 1 0 0 0 0 1 0 0

directs the SFR module to save the MTF plot in
cycles/(pixel or distance) and the CSV output file that
contains detailed results.

Another important variable that appears in the sections for the five modules is closefigs. If closefigs = 1,
figures will be deleted after being saved.

Some specific settings

[SFR]

roi_mult contains the coordinates of the region(s) of interest, four entries per region:
Left, Top, Right, Bottom (L T R B, with the number of regions specified by nroi). Units
are in pixels from the top-left of the image. Note that this is different from the order
displayed on the SFR Edge/MTF figure: L R T B.

Function Prototypes & Definitions:

Imatest IT/SDK programs are initiated by calling them inside of your C/C++ program. The steps
(excerpted from Matlab documentation) are:

1. Declare variables and process/validate input arguments.

2. Call mclInitializeApplication(), and test for success. This function sets up the global MCR state
and enables the construction of MCR instances.

3. Call, once for each library, Initialize, to create the MCR instance required by the library.

4. Invoke functions in the library, and process the results. (This is the main body of the program.)

5. Call, once for each library, Terminate, to destroy the associated MCR.

6. Call mclTerminateApplication to free resources associated with the global MCR state.

7. Clean up variables, close files, etc., and exit.

More information about handling MATLAB based C/C++ libraries can be found here under the
subsection, “Libraries”. See also, mwArray.

For the imatest_sfr library, these functions have the calling form:

imatest_sfrInitialize(void) To initialize the library.

imatest_sfrTerminate(void) To close the library.

imatest_sfrPrintStackTrace(void) To resolve a stack trace within the library.

mlxSfr(int nlhs, mxArray *plhs[],
int nrhs, mxArray *prhs[])

C call to the SFR function. See parameter spec below.
See Calling a (C) Shared Library.

sfr_shell(int nargout, mwArray
&nret, mwArray &inputFile,
mwArray &inputDir, mwArray
&inputKeys, mwArray &opMode,
mwArray &varargin)

C++ call to the SFR function. See parameter spec below.
See C++ Shared Library Target.

http://www.mathworks.com/help/toolbox/compiler/mclinitializeapplication.html
http://www.mathworks.com/help/toolbox/compiler/mclterminateapplication.html
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/index.html?/access/helpdesk/help/toolbox/compiler/&http://www.mathworks.com/support/product/product.html?product=CO
http://www.mathworks.com/help/toolbox/compiler/f0-98564.html
http://www.mathworks.com/help/toolbox/compiler/f2-972343.html#f2-999458
http://www.mathworks.com/help/toolbox/compiler/f2-995712.html

mwArray &varargin)

sfr_direct(int nargout, mwArray
&nret, mwArray &inputFile,
mwArray &inputDir, mwArray
&inputKeys, mwArray &opMode,
mwArray &image_raw, mwArray
&res)

C++ call to the SFR function passing in direct image
data. See parameter spec below. (Note: sfr_direct has
been deprecated, but will be kept through 2012. It has
been replaced by opMode = -15, -17, which works with
all modules).

For the imatest_sfrplus library, these functions have the calling form:

imatest_sfrplusInitialize(void) To initialize the library.

imatest_sfrplusTerminate(void) To close the library.

imatest_sfrplusPrintStackTrace(void) To resolve a stack trace within the
library.

mlxSfrplus(int nlhs, mxArray *plhs[], int nrhs, mxArray
*prhs[])

C call to the SFRplus function.
See parameter spec below. See
Calling a (C) Shared Library.

sfrplus_shell(int nargout, mwArray &nret, mwArray
&inputFile, mwArray &inputDir, mwArray &inputKeys,
mwArray &opMode, mwArray &varargin)

C++ call to the SFRplus function.
See parameter spec below. See
C++ Shared Library Target.

All other libraries (sfr, colorcheck, blemish, etc.) have similar calling methods, visible in the appropriate
header file included with each directory.

Parameters of type mwArray are Matlab Array objects. For both the sfr and sfrplus libraries, nlhs
and nargout (the number of output fields) are zero. *plhs[] and mxArray &nret are place holders for
the data returned by sfr_shell and sfrplus_shell. Currently the libraries do not return information.
mxArray &inputFile is the parameter that specifies the full path to the image file to be analyzed; see
below for an example of how to pass this information to the Imatest libraries. mxArray &inputDir is a
full path name that specifies the folder where the application is located. mxArray &inputKeys is the
parameter that specifies the results to be returned by the module (“JSON” is recommended in Imatest
3.9+). mxArray &opMode specifies DLL Mode and how images or image files are passed to the
module. Details below.

Table of parameter specifications
Program names and parameters should contain full path names to minimize the likelihood of error.

mwArray
&inputFile

Image file name. The full path name should be used, e.g.,”c:\program
files\imatest\IT\Stepchart_DR_Canon_G2.JPG” in the example below. Multiple

http://www.mathworks.com/help/toolbox/compiler/f2-972343.html#f2-999458
http://www.mathworks.com/help/toolbox/compiler/f2-995712.html

files can be analyzed if it contains the wildcard character (*).

mwArray
&inputDir

The folder where the IT/SDK and other programs are located.

mwArray
&inputKeys

inputKeys = 0 or ’0′; out[] contains no output, no outputs should be specified in
the sfrplus() call as the function will only generate test artifacts.

inputKeys = ‘JSON’; out[] contains a JSON object with the important results
found in the CSV output file. Strongly recommended when a single file is
analyzed. (Use caution when multiple files are analyzed; only results from the
last file will be returned.) [JSONlab license notice]

Parameters and corresponding outputs for sfrplus (deprecated; will be
kept through 2012: ‘JSON’ recommended):

inputKeys = 1; out[] corresponds to MTF50 results, cy/px of selected regions of
interest. This will always be for whatever the number of ROIs you have selected
in rescharts or the “roisel” [ROI Selection Pattern] parameter is in the imatest.ini
file.

inputKeys = 2; out[] corresponds to MTF50 results, cy/px of selected regions of
interest and additionally the deltaE values of color patches 2, 3, and 4 in the
SFRplus colorchart analysis. This requires the “colorchart = 1″ to be set in the
imatest.ini file. The deltaE values will be appended to be after the MTF50
results.

inputKeys = 3; out[] corresponds to MTF50 results, cy/px of selected regions of
interest and additionally the deltaE values of color patches 2, 3, and 4 in the
SFRplus colorchart analysis. This requires the “colorchart = 1″ to be set in the
imatest.ini file. The deltaE values will be appended to be after the MTF50
results. Additionally, the l*a*b results from input will be appended after the
DeltaE data, for color patches 2, 3, and 4.

In SFR_Direct, inputKeys = 3 is used for signalling the system to use raw data
in the image processing, and it will return the mtf50 result of a single SFR
analysis.

mwArray
&opMode

-5 through -10 and -15 through -20 indicate DLL Mode. Prior to December
2011 only -5 was recognized; the others were added in December 2011 and
January 2012.

-5, -6, -9, and -15: imatest.ini in the &inputDir folder (the default) is used
as the INI control file. n = 1 in references to varargin{n}, below.

-7, -8, -10, and -17: varargin{1} contains the full path name of the INI
control file. n = 2 in references to varargin{n}, below.

-5, -7: One or more input files is read in. The full path name of the first file is

http://json.org/
http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?jsonlab/Doc/LICENSE_BSD

located in &inputFILE. This file may contain a wildcard character (‘*’). If one or
more additional arguments are present (in &varargin{n}, …), additional files
are read in and analyzed separately.

-6, -8: Two input files are read in for measuring temporal noise. &varargin{n}
is the second image file name (full path name) for measuring temporal noise
(colorcheck and stepchart-only).

-9, -10: One or more input files is read in. The full path name of the first file is
located in &inputFILE. This file may contain a wildcard character (‘*’). If one or
more additional parameters are present (in &varargin{n}, …), additional files
are read in and combined for analysis (rather than analyzed separately) to
improve the Signal-to-Noise Ratio (SNR).

-15, -17: The input image is passed directly from the calling program; no file is
read in; &inputFILE is ignored. &varargin{n} contains the image data (which
may be raw or processed; UINT_8 or UINT_16); &varargin{n+1} contains a
JSON object with metadata required for interpreting (i.e., decoding) the image.
Details below.

mwArray
&varargin

List of additional files or data to process. &varargin consists of one or more
parameters (varargin{1}, varargin{2}, etc.). These parameters are specified in
&opMode, above. In references to varargin{n} (above), n = 1 if the default
imatest.ini file is used (&opMode = -5, -6, -9, -15); n = 2 if the INI control file is
specified in varargin{1} (&opMode = -7, -8, -10, -17).

Note: The following two parameters, which were used in sfr_direct, have been deprecated, but will
be kept through 2012. They have been replaced by &varargin entries for &opMode = -15 and -
17.

mwArray
&image_raw

A raw stream of image data, as type uint_8 which can then be cast into a
WxHxBitsize matrix for passing into SFR routine for analysis. See the
main2.cpp example of the SFR library example routine.

mwArray
&res

Resolution of image data, width by height, this can then be used to define the
image_raw data into a mwArray type so that the Imatest SFR function can treat
your image as a 24-bit BMP, for example:

// For direct input of image: dimensions are height x width, this uses functions
from the imatest_sfr header which includes MathWorks mwArray types
(mclmcrrt.h)
int image_res[2] = {1024, 768};
mwSize dims[3] = {image_res[2],image_res[1],3};
mwArray image_rawParam(3, dims, mxUINT8_CLASS); //This creates a
WxHx3 matrix, for a 24-bit BMP
mwArray resParam(1, 2, mxINT16_CLASS);
resParam.SetData(image_res, 2);
image_rawParam.SetData(<image_buffer_pointer>,<size_of_buffer>);

http://json.org/

Returning results with JSON

JSON objects are a convenient and easy-to-implement means of passing Imatest IT/DLL results back
to the calling program. In most programming languages (what, no FORTRAN?) a single call is
available to convert a JSON object to a data structure or vice-versa. Here is a portion of the JSON
object returned by sfr (with skipped or shortened lines indicated by …). For the most part, names in the
object (and hence in the corresponding data structure) are self-explanatory. JSON output files are
being added to Imatest Master modules (in addition to CSV and XML). [JSONlab license notice]

{
 ”sfrResults”: {
 ”dateRun”: “26-Dec-2011 16:34:18″,
 ”roi_mult”: [
 [1706,1327,1898,1605],
 [3685,374,3978,542]
],
 ”mtfPeak”: [1.316749102,1.125382339],
 ”mtf50″: [0.4023813085,0.3236112599],
 ”mtf50p”: [0.3663296738,0.3100313299], …,
 “mtf10″: [0.5373973791,0.4691161373],
 ”mtf10p”: [0.5228006564,0.4591916907],
 ”edgeRoughSTD”: [
 [0.09443263439,0.1002447785],
 [0.0423559873,0.04494066213],
 [0.06807294473,0.1000587208],
 [0.04869192922,0.05593847561]
],
 “CA_crossPxls”: [0.1156214328,0.1508858711], …,
 ”MTFfreq”: [0,0.025,0.05,0.075,0.1,0.125,0.15,0.175,0.2,0.225,0.25,0.275,0.3,0.325, ...],
 ”MTFinterp1″: [1,0.9557716778,0.9434756776,0.9619840588,1.017016935,1.040196171, ...],
 …,
 “MTFinterp4″: [1,0.9621111279,0.969935489,1.007033219,1.069689419,1.107938549, ...]
 }
}

roi_mult is the [Left,Top,Right,Bottom] pixel locations of the Regions of Interest (ROIs). MTFfreq are
frequencies in cycles/pixel of interpolated MTF results. MTFinterp1 and MTFinterp4 are the
interpolated MTFs of the Red and Luminance (Y) channels, respectively (with 2 for Green and 3 for Blue
skipped).

Please contact us if you’d like additional results added.

http://json.org/
http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?jsonlab/Doc/LICENSE_BSD

Passing images directly

Images (processed RGB or RAW) can be passed directly from the calling program to the IT/DLL
module when &opMode is set to -15 (default imatest.ini control file; n = 1) or -17 (named ini control file
in &varargin{1}; n = 2). Passing images directly is generally much faster than reading them from files,
and strongly recommended for speed-critical high-volume testing.

For direct image passing, &varargin{n} contains the image (passed as a binary stream, 8 or 16 bits
per pixel), and &varargin{n+1} contains a JSON object with information needed to decode (or
reconstruct) the image.

Processed (RGB or monochrome) Images

For RGB images the JSON object must contain the image width, height, number of colors, and image
type indicator (‘rgb1′ below), as shown in the following Matlab test case, which reads an image (to test
IT/DLL), prepares it to be passed as a binary data stream (reshape), then calls

im_orig = imread(rdfname); % Read a processed RGB image. For test example-only.
disp(['Read ' num2str(numel(im_orig)) ' byte image.']);
sz_orig = size(im_orig);
jstr.height = sz_orig(1); % Number of rows (image height in pixels).
jstr.width = sz_orig(2); % Number of columns (image width).
if length(sz_orig)>=3 jstr.ncolors = sz_orig(3); % Number of colors for this file.
else jstr.ncolors = 1;
end
jstr.extension = ‘rgb1′; % MUST be RGBn or correspond to Read Raw extension!
jstr.fileroot = rdfname; % Root file name for saving CSV, JSON, etc. output files
jsonObj = savejson(”,jstr,[]); % Convert structure into JSON object.
im_orig = reshape(im_orig,1,numel(im_orig)); % Reshape to one-dimension.
disp(char({”;’DIRECT READ: SINGLE PROCESSED IMAGE, NO PLOTS’}));
inifile = ‘C:\Imatest\matlab\trunk\API\it_samples\stepchart\control_file.ini’;
output = stepchart_shell(”, ‘C:\Imatest\matlab\trunk\API\it_samples\stepchart’, …
‘JSON’, ‘-17′, inifile,im_orig,jsonObj); % Output contains results in a JSON object.

Notes

File type indicator indicator ‘rgb1′ indicates a standard RGB or monochrome image in the
default Matlab order. We will add additional types upon user request.

Raw images

Raw images with properties described in Generalized Read Raw can be passed directly to Imatest

http://json.org/
http://www.imatest.com/docs/raw/#readraw

Raw images with properties described in Generalized Read Raw can be passed directly to Imatest
modules. Note that this does not refer to commercial raw files (NEF, CR2, etc.), which contain
metadata and are typically packed (to minimize file size— pixels often straddle bytes). To pass raw
files directly you need to set up parameters for interpreting (decoding) them using Generalized Read
Raw.

Save the raw image as a simple binary stream, one or two bytes per pixel (as required). Give
the saved file a unique extension (up to 4 characters), which should not be a recognized image
file extension (JPG, TIF, PNG, GIF, PPM, etc.— see the Mathworks imread documentation) or a
commercial raw image file extension recognized by dcraw (NEF, CR2, etc.— many are listed in
the rawphoto.c GIMP plugin). ‘raw’ is acceptable, but something less generic is recommended.
In Matlab you would save the image with a statements of the form,
 fileID = fopen('filename.raw3','w');
fwrite(fileID, imageArray, precision),
where precision might be ‘uint8′ or ‘uint16′.

Following instructions in Generalized Read Raw, set up decoding parameters for this
extension. Test them by pressing , then opening the saved raw image file. A few iterations may
be required to get the settings right. They are saved in the [rdraw] section of imatest.ini (in the
standard location for saved settings), which should be copied to a named file location (inifile in
the example below) by clicking Settings, Save settings…

Here is a Matlab test case, showing the key settings for reading a raw image.

jstr.extension = ‘raw3′; % MUST correspond to Read Raw extension!
jstr.fileroot = rdfname; % Read a raw image. For test example-only.
jsonObj = savejson(”,jstr,[]); % Convert structure into JSON object.
endian_str = ‘ieee-be’; precision = ‘uint16=>uint16′;
fd = fopen(‘filename.raw3′, ‘r’, endian_str) ; % Open the image test file for reading.
[im_orig count] = fread(fd, inf, precision) ; % Test file.
output = stepchart_shell(”, ‘C:\Imatest\matlab\trunk\API\it_samples\stepchart’, …
 ‘JSON’, ‘-17′, inifile, im_orig, jsonObj); % Output contains results in a JSON object.

Calling IT/DLL from Matlab using pCode

This section explains how to call Imatest IT/DLL from Matlab using pCode (obfuscated m-file) routines.

Matlab pCode files (indicated by the .p extension) perform identical functions to the m-files from which
they were created. The only difference is that they are obfuscated— the source code is invisible. Unlike
Imatest IT/DLL or Master, pCode files are not compiled.

The Imatest IT/DLL pCode libraries contain functions for calling the eight Imatest analysis modules
supported by IT/DLL, along with the required toolbox files. They can be accessed by

http://www.imatest.com/docs/raw/#readraw
http://www.mathworks.com/help/techdoc/ref/imread.html
http://www.cybercom.net/~dcoffin/dcraw/
http://www.cybercom.net/~dcoffin/dcraw/rawphoto.c
http://www.imatest.com/docs/raw/#readraw

setting the current Matlab folder to the location of a pCode library,

adding the pCode library location to the path by entering File, Set Path…,

using the Matlab path command, or

setting the path to the pCode library location in startup.m in the Matlab startup folder (“Start in:”
in the shortcut properties).

Running pCode modules requires a properly configured imatest.ini file, as described above.

Function Prototypes & Definitions:

<module_name>_shell.p
<module_name>_shell(inputFile, inputDir, inputKeys, opMode)

All libraries have similar calling methods.

pCode input parameters

inputFile Image file to be analyzed. The full path name should be used, e.g.,
‘C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\example.JPG’ in the
example below

inputDir The folder where the application and other programs are located. A full path name
is required

inputKeys The control parameter for specifying how you would like the module to run. If this
parameter is NULL, the module will attempt to use imatest.ini if it exists or create
an imatest.ini if it does not exist.

opMode DLL Mode specifier. Should be set to ‘-5′ (integer or character string).

Parameters and corresponding sfrplus outputs

inputKeys
= 0 or ’0′

out[] contains no output, no outputs should be specified in the sfrplus() call as the
function will only generate test artifacts.

inputKeys
=
‘JSON’

out[] contains a JSON object with detailed results (similar to the results in the CSV
and XML output files). JSON objects are extremely easy to parse in a wide range
of calling programs. Recommended.

The following entries contain values which have been deprecated (no longer
recommended), but will be kept for the duration of 2012 for backwards compatibility.

http://www.imatest.com/docs/it_dll_instructions/#ini
http://json.org/

inputKeys
= 1 or ’1′

out[] corresponds to MTF50 results, cy/px of selected regions of interest. This will
always be for whatever the number of ROIs you have selected in rescharts or the
“roisel” [ROI Selection Pattern] parameter is in the imatest.ini file.

inputKeys
= 2 or ’2′

out[] corresponds to MTF50 results, cy/px of selected regions of interest and
additionally the deltaE values of color patches 2, 3, and 4 in the SFRplus
colorchart analysis. This requires the “colorchart = 1″ to be set in the imatest.ini
file. The deltaE values will be appended to be after the MTF50 results.

inputKeys
= 3 or ’3′

out[] corresponds to MTF50 results, cy/px of selected regions of interest and
additionally the deltaE values of color patches 2, 3, and 4 in the SFRplus
colorchart analysis. This requires the “colorchart = 1″ to be set in the imatest.ini
file. The deltaE values will be appended to be after the MTF50 results.
Additionally, the l*a*b results from input will be appended after the DeltaE data, for
color patches 2, 3, and 4.

We can add additional parameter-value pairs on user request. A more general approach of specifying
output variables using key-value pairs is under development.

Example— First, initialize the parameters:

cd(‘C:\Imatest\matlab\trunk\API\DLL_installation\libs\sfr\pcode\sfr’); % Location of pCode files
inputKeys = ’1′; % Specifies the results to return; results files are set in imatest.ini
opmode = ‘-5′; % To run in standalone mode without Imatest Master
program_path = ‘C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\’; % Full pathname where
imatest.ini is located.
file_name = ‘C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\example.JPG’;
% file_name = ['..\..\..\..\samples\sfr\example.JPG']; % Alternative form: could use filesep for ‘\’

Then call the pCode module. Here is the call and the output. The run time (around 28 seconds total)
was much slower than for SFR in Imatest Master.

>> sfr_shell(file_name,program_path,inputKeys,opmode)
 ‘SFR DLL ‘
 ‘C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\example.JPG’
 ‘C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\’
 ‘C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\\imatest.ini’

Max, min pixel levels: 252 1
Zone 1 H-edge correction: shift by 365 pixels.
Zone 1 vertical shift = -1161
‘”C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\jhead.exe”‘ is not recognized as an internal
or external command,

operable program or batch file.
Call to EXIF routine took 0.571s. Consider turning off EXIF for speed.

example.JPG 24-Dec-2011 11:20:14
Save SFR results to C:\Imatest\matlab\trunk\API\DLL_installation\samples\sfr\Results\ 24-Dec-2011
11:20:41
Summary written to example_YA50_01.xml.
Elapsed time = 19.6675s for 1 ROIs. 19.6675s/ROI (speedup = 0)
SFR complete: 28.15s total 23.15s active 24-Dec-2011 11:20:42

ans =
 1.9956

If an error is detected, a message is:

*appended to the error log file, which has the name of the form module.log (sfr.log, colorcheck.log,
stepchart.log, distortion.log, uniformity.log, …), and is located in %APPDATA%\Roaming\Imatest.
*written to the CSV and/or XML file that would otherwise contain the results of the run. For the example
above,
if a CSV output file were called for, it would be c:\program
files\imatest\IT\Results\Stepchart_DR_Canon_G2_summary.csv ;
if an XML output file were called for, it would be c:\program
files\imatest\IT\Results\Stepchart_DR_Canon_G2.xml.

Please send error messages, questions, or comments to support at imatest dot com .

Examples:

Included in the library package are six example coding examples written in C++ that demonstrate the
proper framework for invoking a Matlab based library using the Imatest IT DLL libraries. Return
parameters and how to handle them in different methodologies are explored in some of the examples.
To build an example program, be sure that you have followed the setup requirements above, locating
the /images subfolder into the run-time directory and correctly specifying where the imatest.ini file and
example.jpg image file having been unzipped on your local machine. The main.cpp has all examples
and program directories in the file name and program run directory parameters specified as
C:\imatest_example and C:\imatest_example\example.jpg

Error handling:

Imatest IT/DLL functions return a value of 0 if they terminate correctly or 1 or larger if they terminate in
error. C++ interface functions handle errors during execution by throwing a C++ exception. Use the
mwException class for this purpose. Your application can catch mwExceptions and query the
what() method to get the error message. To correctly handle errors when calling the C++ interface

functions, wrap each call inside a try-catch block.

try
{
 ...
 (call function)
 ...
}
catch (const mwException& e)
{
 ...
 (handle error)
 ...
}

Upon library initialization, Imatest IT/DLL outputs “Starting Imatest…” to standard out.

If an error is detected, a message is

appended to the error log file, which has the name of the form module.log (sfr.log,
colorcheck.log, stepchart.log, distortion.log, uniformity.log, …), and is located in
%APPDATA%\Imatest.

written to the CSV and/or XML file that would otherwise contain the results of the run. For the
example above,
if a CSV output file were called for, it would be c:\program
files\imatest\IT\Results\Stepchart_DR_Canon_G2_summary.csv ;
if an XML output file were called for, it would be c:\program
files\imatest\IT\Results\Stepchart_DR_Canon_G2.xml .

APPDATA is a DOS environment variable whose value can be found by opening a DOS (CMD)
window (you can double-click start-dos.bat in the Imatest folder), and typing

set APPDATA (Returns the folder name corresponding to APPDATA)
–or–
dir “%APPDATA%\Imatest”

APPDATA has values of the form

Lines in the log file have the format,

[Date Time], file_name, error_message

Example:

[05-May-2007 23:34:08], c:\Imatest\data_distortion\distgrid101.jpg, Inconsistent Vert lines 17 det.; 18
avg. Incomplete line?

We are constantly working to improve the robustness of Imatest algorithms to minimize the occurrences
of errors, which are typically caused by poor region (ROI) selections or poor quality images.

	Imatest - IT-DLL Instructions
	How Imatest IT/DLL works
	Installing Imatest IT/DLL
	Windows Dynamic Link Library (DLL) files
	C Header and Library Files:
	C++ Header and Source DLL Files:
	Matlab pCode:
	MATLAB and Image Files:
	How to build an executable utilizing Imatest IT libraries:

	Setting up IT/DLL, using Imatest Master and configuring the imatest.ini file.
	To setup your testing environment using Imatest Master:
	INI file: more detail
	Function Prototypes & Definitions:
	Returning results with JSON
	Passing images directly
	Processed (RGB or monochrome) Images
	Raw images

	Calling IT/DLL from Matlab using pCode
	Function Prototypes & Definitions:

	Examples:
	Error handling:

