
Implementierung von CDP
Entwicklung eines Programmiercodes in Python zur

Untersuchung und Messung von CDP bei

Fahrerassistenzkameras

Bachelor Thesis von Lukas Ebbert

Matrikelnummer: 675102

Im Studiengang Wirtschaftsingenieur Elektrotechnik

Fachbereich Elektro- und Informationstechnik

August 22, 2018

Erstprüfer: Prof. Dr. rer. nat. Alexander Braun
Zweitprüfer: Dr. rer. nat. Marc Geese

Contents

Eidesstattliche Versicherung

Acronyms

1. Introduction 1

2. Image quality metrics 3

2.1. Imaging chain of a camera system . 3
2.2. Project P2020 at the Institute of Electrical and Electronics Engineers . 4
2.3. Contrast detection probability . 6

3. Implementing CDP 9

3.1. Structure of the program . 9
3.2. Functions of the program . 11

3.2.1. CDP simulation . 11
3.2.2. CDP evaluation with Images . 18
3.2.3. Video CDP evaluation . 21

4. Application and limits of CDP 23

5. CDP simulation with different parameters 25

6. Summary 29

A. Code export from Python 31

Bibliography 93

Eidesstattliche Versicherung

Hiermit versichere ich, Lukas Ebbert, an Eides statt, die vorliegende Bachelor Thesis
selbständig verfasst und keine weiteren als die angegebenen Hilfsmittel und Quellen
benutzt zu haben.

Dies ist die von der Hochschule Düsseldorf zu bewertende Version.

Ort, Datum _________________ Unterschrift ________________

Acronyms

Acronyms

ABS antilock braking system
ACC adaptive cruise control

CDP contrast detection probability

HDR high dynamic range

IEEE Institute of Electrical and Electronics Engineers
ISP image signal processor

KPI key performance indicator

OEC optical electrical conversion
OEM original equipment manufacturer

ROI region of interest

SNR signal to noise ratio

Tier1 system supplier of OEM
Tier2 component supplier of OEM

1

1. Introduction

The developing of driver assistance systems is increasing in the last half decade. A
lot of people are interested in driver assistance function. So nearly every sold new
car includes some driver assistance functions like for example antilock braking system
(ABS) which is already legally obligated in some states[2]. But the development is
going further and original equipment manufacturer (OEM), also known as car maker
for example Daimler, BMW, and others, are trying to introduce adaptive cruise control
(ACC) on an autonomous basis. These advanced driver assistance functions are using
different types of sensors for example radar, camera, lidar and others. And for all
these sensors it is important to describe their quality and functions correctly. But the
actual existing image quality standards and their key performance indicator (KPI) are
not appropriate enough because their goal is focusing on other use cases. For example
the EMVA 1288 is an often used standard to describe image quality but this standard
is focused on viewing applications[3]. To solve these occurring requirement problems
the Institute of Electrical and Electronics Engineers (IEEE) started a working group
to implement a standard for machine vision applications with focus on automotive
applications.
In this working group a new KPI was introduced. The KPI is named contrast detection
probability (CDP). The goal of this bachelor thesis is to develop a python program
to simulate this new defined KPI. This program should deliver a common program
for all OEM, system supplier of OEM (Tier1) and all component supplier of OEM
(Tier2) to evaluate the CDP of their system or component. At the beginning a basis
program was already existing from the P2020 Face to Face Meeting in Brussels which
was extended and reworked.
To reach this goal the definition of imaging chain will be explained at the beginning.
Afterwards the working group of the IEEE will be described. In the next subsection
the KPI called CDP which is evaluated in this thesis will be presented.
In the next chapter the developed program will be explained. This chapter is divided
into two section one of these is targeting on the structure of the program the other
one is describing the methods of the program. The section functions is divided into
three subsection for each application file.

2

After the program is presented the occurred limits of CDP will be mentioned to
understand the use cases of CDP correctly.
In the last chapter different cases of the CDP evaluation are simulated to present the
effects of some special selected parameters. This help to understand which parameters
do affect the CDP value.

3

2. Image quality metrics

In this chapter there will be an explanation of an imaging chain, an explanation of
the background of this project and an explanation about the new KPI named CDP.

2.1. Imaging chain of a camera system

An imaging chain consists of different steps to process a scene into digital numbers.
An example of an imaging chain model is shown in figure 2.1. This imaging chain
focuses on automotive applications. It consists of a scene where light beams in all
possible directions in the world. This light beams transmit through a windscreen of
a car where the light loses intensity and veiling glare is added to the signal. These
loses are differ for each specific windscreen because each material behaves different.
Afterwards the optic is transmitted. The optic are lenses which are different for each
camera. Then the light hits the image sensor often called imager. In the imager
the signal is processed by different steps they are also exemplary shown in figure 2.1.
In this sensor model at first the optical electrical conversion (OEC) is done. After
the signal is converted from an optical signal to an electronic signal dark current is
added to the signal. Dark current can be simulated by different models for example
by using a random Poisson process. A image sensor has a defined range of values he
can handle. All signals above this value will be cut this process is called clipping.
In an existing imager the signal will not rise above this value. At the end of the
processed steps in the imager the signal will be converted from an analog signal to a
digital signal. For example it could be implemented by just cutting the decimal or
with a quantization factor often called K-Factor. Then the signal will be processed
by an image signal processor (ISP). In an ISP can happen different processing steps
for example an interpolation between neighboring pixels or a tone mapping for a high
dynamic range (HDR) image. Tone mapping is resizing an image from an image with
high resolution to an image with a lower resolution.
In figure 2.1 is only an exemplary imaging chain shown. Every image chain of a specific
camera system is different. This example is focusing on automotive applications so
the windscreen is part of the imaging chain. A camera system to take images would

4
2.2. PROJECT P2020 AT THE INSTITUTE OF ELECTRICAL AND

ELECTRONICS ENGINEERS

Scene Windscreen Optic Imager ISP

OEC ADCCapacitorDark Current

Figure 2.1.: Example of an imaging chain of a digital camera system[4, adapted from]

not include a windscreen. Also the steps which are done by separate parts are different
for each model. For example the OEC in every sensor model may differ. Also every
supplier makes different approaches of the windscreen to reproduce the scene. Every
supplier implements their own sensor model which often diverse[5, p. 188f].

2.2. Project P2020 at the Institute of Electrical and

Electronics Engineers

To understand the background of this project the P2020 working group of the IEEE
will be explained in this section. The project P2020 is a working group which is de-
veloping an image quality standard for automotive applications. This group started
working in July 2016. Their goal is to find a common language to describe image
quality and camera systems for automotive applications correctly and consistently[7].
The problem occurred with the introduction of cameras in cars to solve the appearing
problems by the development of driver assistant systems. There are a lot of stan-
dards to describe the quality of cameras, but most of them concentrate on viewing
applications like EMVA 1288 and are not created for machine viewing applications.
But at a more detailed look at some of the KPI of EMVA it seems that these KPIs
are not convenient to describe image quality for machine viewing applications. As
a example the Signal to Noise Ratio (SNR) is suitable which is defined by equation
2.1[3]. Sometimes it is also used with the factor 20.

SNR = 10 · log(Signal/Noise) (2.1)

In figure 2.2 is the course of SNR over the imaging chain illustrated. On the y-axis
the SNR is plotted and on the x-axis the step of the imaging chain is shown. A patch
of same pixels were used for this evaluation. It is visible with the blue line that SNR

2.2. PROJECT P2020 AT THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS 5

Figure 2.2.: Signal to Noise Ratio course of the Imaging Chain

increases after the windscreen caused through the veiling glare which increases the
signal but the noise is not changing. Also the SNR increases through the tone map
algorithm because the standard deviation of the signal gets decreased through the
quantization effects because the signal is compressed to a lower diversity.

But this does not makes sense because normally after each step the image quality
should decrease because with each step of the imaging chain the data quality is de-
creasing caused through the processing. This is caused by the fact that it is not
possible to gain new or better information with a process which is a reproduction of
the step before.

Also if the image sensor reaches its full well level the signal to noise ratio (SNR) rises
to infinite. Because noise strives to zero. But all information in the image is gone
because all pixels have the same value.

Because of this problems a lot of OEM, Tier1 and Tier2 joined forces to develop
a language to describe image quality in a more common way. A lot of them are
participating in the project P2020 to develop a standard for their specific use case for
example Bosch, Valeo, Daimler, ON Semiconductor, Sony Semiconductor and many
more[9].

6 2.3. CONTRAST DETECTION PROBABILITY

2.3. Contrast detection probability

One of the new KPI’s is the so called contrast detection probability. This KPI was
developed because camera systems are able to detect objects via contrast. Contrast is
the luminance difference of two different light patches. Luminance is the light beamed
from a given object. The physical domain of luminance is cd/m2. The contrast used
for CDP is the Weber contrast see equation 2.2[8]. This contrast is defined by the
relation of the highest luminance patch to the lowest luminance patch minus 1. This
contrast is used because numbers from zero to infinite can occur. So every object has
a specific contrast.

KWeber =
Emax
Emin

− 1 (2.2)

CDP has the goal to be a metric to give information about the probability that a
given contrast can be detected by the system or component. Also it was important
that it can be used for each part of the imaging chain in system and component level
and the possible transfer to other sensor systems of driver assistance functions. The
results of CDP are between zero and one because the wish was to have an absolute
space where the KPI is suitable. This makes the definition of requirements to the
supplier more comfortable.

The definition of CDP is shown in equation 2.3[4].

CDPKin
= Prob(Kin(1 − ε) ≤ Kmeas. ≤ Kin(1 + ε)) (2.3)

This implies for every contrast Kin in Weber Contrast, see equation 2.2, the system
has a specific probability that a contrast can be recognized under given surroundings
for example veiling glare or temperature. The results will be between zero and one. It
depends on the defined epsilon. Epsilon will be defined by the use cases and the ability
of the used neural networks to detect a specific object. So for example if the neural
network behind the camera is able to detect a 100% contrast if contrasts between 50%
and 150% are appearing. Then the epsilon has to be 0.5.

To calculate the CDP two different region of interest (ROI) are defined one dark and
one bright ROI. In figure 2.3 (a) is a 100 % checkerboard shown. In this example
the first ROI would include the black parts and the second ROI would exists of the
white parts. With the luminance of the patches measured in cd/m2. This results in a
probability density function gray balks and a summed probability function blue line
shown in figure 2.4 the value of the density function is normed to one. On the x-axis

2.3. CONTRAST DETECTION PROBABILITY 7

(a) 100% checkerboard as perfect visualization (b) 100% checkerboard after the ISP

Figure 2.3.: Checkerboard with a KWeber = 100%

the values and on the y-axis the probability of these values are illustrated. In this
case two signals are appearing with a Weber contrast of 100% which is the Kin for this
scene. After processed through the imaging chain the data has changed this is visible
in figure 2.3 (b). This difference to the original scene is caused by the processing of
the imaging chain described in chapter 2.1. So the summed probability and density
function has changed, illustrated through figure 2.5. Now the contrast between each
pixel from the first ROI to each pixel of the second ROI has to be calculated which
results in different appearing contrasts. Figure 2.6 shows all occurring contrasts with
the x-axis illustrating the contrast in a familiar illustration like used before. With
the summed probability function the CDP can be calculated. The Kin as mentioned
before is 100%. If the above described epsilon = 0.5 is used. This epsilon produces a
confidence interval between 150% and 50% where the contrast can be detected. So to
calculate the CDP the value of the summed probability function at the point 150%
has to be subtracted by the value of 50%. This equals the CDP in this example it is
read from the image as approximately 0.65.

8 2.3. CONTRAST DETECTION PROBABILITY

Figure 2.4.: Plot with the values of figure 2.3 (a)

Figure 2.5.: Plot with the values of figure 2.3 (b)

Figure 2.6.: All occurring contrasts of the image

9

3. Implementing CDP

This chapter describes the structure and the functionality of the program. There-
fore the outputs generated by the program are illustrated. The outputs consist of
charts and different float numbers. Also the steps which are done by the program are
described.

3.1. Structure of the program

The program consists of methods and application files. The Application files use the
methods or functions to show how to use these methods and gain output. Methods
or functions are the processing steps inside an imaging chain explained in chapter 2.1
also methods are the calculation of CDP and SNR.
All files are stored in one main folder. In this main folder are some other folders. These
folders include functions, images to evaluate, videos to evaluate and XLS results. The
applications files are stored in the main folder. Like the name says the functions files
will be found in the functions folder. In the folder images to evaluate the images used
for the CDP evaluation have to be saved. Videos to evaluate is to store the videos
in this specific folder. If results have to be written to a XLS sheet the created file is
stored in XLS results.
It exists ten function files see figure 3.1. These files represent each step of the imaging
chain, one python class with a common data structure for the program, one file for
each image and video processing and also there is a python file to evaluate the image
quality in different ways. The implemented parts of the imaging chain are the parts
described in chapter 2.1 additionally a second sensor model is implemented to show
the possibility to extend the program. Figure 3.1 shows which application file uses
which methods file. On the left side are the three application files shown on the right
side the ten method files. The method file C_Test is the second imager model file.

10 3.1. STRUCTURE OF THE PROGRAM

Application files Methods

CDP_simulation

Image_CDP_evaluation

Video_CDP_evaluation

C_IOData

C_Scene

C_Windscreen

C_Optics

C_Sensor

C_ISP

C_Test

C_Image_quality

Image_Processing

Video_Processing

Figure 3.1.: Dependence of the files to each other

3.2. FUNCTIONS OF THE PROGRAM 11

3.2. Functions of the program

In this section the functions of the program will be described. Each function is a
step in the imaging chain and has a influence on the value of CDP. This influence is
illustrated by plotting the relevant data after each step. Also there is an explanation
of the generated plots. The functionality is additionally documented in python. The
description mentions which variables are necessary, which are optional and which will
be returned by the function see the program export in the appendices. If a variable
is not known a value is used which could represent a logical value. It is possible to
extend the separate parts for a specific use case. There are a lot of different models
for each step they could be added but a lot of them are not public so a public one is
implemented. Most of the following plots reference to a simulated checkerboard with
a contrast of 100% between black and white shown in figure 2.3 (a).

3.2.1. CDP simulation

Class C_IOData
The first Python file to mention is the C_IOData file. This Python file delivers an
uniformed data structure for every part of the program. The structure consists of
two arrays, one for data the imager is using and one for the data transformed into
the physical domain which is cd/m2 like the evaluation of CDP uses. There is one
function for the conversion back to the physical domain. Besides these arrays there
are different strings existing. They are responsible for the description of the charts.
There are more variables implemented for example pixel pitch and quantum efficiency,
they are used to calculate back from a taken image to the physical domain to evaluate
the CDP of a taken image.
Also in this class are different functions. There is one main function which calls the
sub functions for plotting. The function plots up to two plots for each function call.
It plots two charts if both arrays of the data structure are filled otherwise it plots
one chart. In the charts the summed probability function over all values appearing in
the image or scene and the density function of these values is displayed these values
are normed to one. The summed probability function is shown as a blue continuous
line and the density function is shown as gray balks. On the y-axis is the probability
and on the x-axis is the value from the displayed array plotted. In the upper area
of the plots the SNR value, the mean as µ and the standard deviation, std, of the
scene is shown, see figure 3.2. Also a legend is shown in the upper part. In this figure
the values in the left figure are illustrated in numbers of photons per seconds, square

12 3.2. FUNCTIONS OF THE PROGRAM

Figure 3.2.: Program output: A generated scene with 10 cd/m2 intensity and one signal

Figure 3.3.: Program output: A generated scene with 20 cd/m2 intensity

meter and steradian with processing through the imaging chain this domain changes.
The values in the right figure are in cd/m2 for every step in the imaging chain.

Class C_Scene
To go step by step through the imaging chain the class C_Scene is the next to explain.
In this class a scene will be generated with a given intensity. With this intensity the
light beams which are existing in the real world will be calculated by a mathematical
approach with considering the wavelength, speed of light and the Planck’s constant.

Also the generation process includes that the light is following a Poisson process
because the function for generating a Poisson distribution is limited. It is used an
approximation for values larger than 103. After the function is done all results will
be stored in the data type of class C_IOData. In figure 3.3 the values of a scene with
100% contrast is shown this contrast references to figure 2.3 (a). It is not visible that
the light follows a Poisson process. Normally there should be more different peaks
but the deviation is very low so the differences are not visible. To show the Poisson
process a scene with one signal is plotted in figure 3.2.

3.2. FUNCTIONS OF THE PROGRAM 13

Figure 3.4.: Program output: Scene after processed through the windscreen

Class C_Windscreen
After a scene is generated it transmits through the windscreen. Therefore a class
C_Windscreen is part of the program. In this class veiling glare in percent will be
added to the data and the data will be processed through the windscreen. This means
that the losses caused by transmittance through the windscreen are subtracted from
the signal. The transmittance and the veiling glare can be defined by the user. At
comparing the right figure of 3.4 with the right figure of 3.3 it is visible that both
values have changed. But a bigger changed happened in the left plot of figure 3.4
compared with the left figure of 3.3. This difference comes through the added veiling
glare.

Class C_Optics
The next part of the imaging chain is the optic of the camera system. The input data
will be transmitted through the optics. For the transmission an easy optic model is
used. This optic model is described in equation 3.1 [5, p. 99].

E =
t · π · cos4(Θ)

4 · f#
2(1 +ml)

· L (3.1)

By the user the f-number and the transmittance can be defined.

There is a small difference to the output data of the windscreen visible because this
optic model allows a nearly perfect back transformation in the physical domain see
figure 3.5. Also the domain of the left figure has changed to number of photons per
seconds and square meter. The values in the left figure are different because of the
processing through the optic and there is no conversion back to the input data done.

Class C_Sensor
After the optic model is processed the image sensor is up next. Before processing

14 3.2. FUNCTIONS OF THE PROGRAM

Figure 3.5.: Program output: Data after processed through the optic

the data all variables of the sensor have to be defined. The variables are the pixel
pitch for each pixel in meters, the quantum efficiency in percent, the full well capacity
in electrons, the system gain called K-Factor, the temperature in °C, the mean dark
current for each pixel in electrons, the row wise dark current in electrons, the column
wise dark current in electrons, the doubling temperature in °C, the analog digital
conversion bits, the image signal processing bits, the size of the sensor with the number
of pixel in x- and y-direction and the overall system gain. Of course there are more
variables which could be included into a sensor model like a split pixel model. If
necessary the variable could be extended for specific use.

Neither these variables processes are implemented in this class. They are done inside
the sensor these processes include optical electronic conversion where the photons will
be converted in an electrical signal given in electrons see equation 3.2. After the OEC
the unity has changed to electrons.

eletrons = input · (pixel pitch)2 · exposure time · quantum efficiency (3.2)

After that a dark current will be added to the signal. The dark current in this model
consist of three different random Poisson processes they are one for each pixel, each
row and each column. The dark current depends on exposure time and temperature.
The temperature and exposure time dependency is shown in equation 3.3[3]. The
exposure time will be multiplied to the result.

µdark_temp = µdark · 2
T−Tref

Tdoubling · exposure time (3.3)

Also a fixed pattern noise is added which is a standard deviation for each pixel, row
and column. Then the program checks if the capacitor size is reached everything above

3.2. FUNCTIONS OF THE PROGRAM 15

Figure 3.6.: Program output: Imager output with a 3 ms exposure time

Figure 3.7.: Construction of a HDR image [1, p.108]

this border will be cut this process is called clipping. At the end the electrons will
be processed into digital numbers (DN) by multiplying with the system gain called
K-factor according to EMVA 1288[3] . Also there is a function which combines the
above described functions into one function. The output plot for a sensor is shown in
figure 3.6. The unity of the x-Axis has changed to DN because it is the output created
by the image sensor. Now the signal is not a single balk anymore. It has changed its
shape caused through the dark current and because the sensor is able to convert the
emitted photons more exact than they are visible in figure 3.5.

Also a function to create a HDR image is implemented. A HDR image is created by
using different exposure times for example five different see figure 3.7. HDR images
are created for a better display of the high dynamic range appearing in the world. A
single image with 8 bit range is able to handle a dynamic range of 48 dB. But in reality
most scenes have a range of 80dB. The different exposure times will be combined to
one picture.

In figure 3.7 is the creation of the implemented HDR algorithm shown. The brightest
pixel will be taken from the shortest exposure time. And the darkest parts will be
taken from the longest exposure time. All these values will be optimized for one

16 3.2. FUNCTIONS OF THE PROGRAM

Figure 3.8.: Program output: HDR image of the described image

exposure time by a linear transformation to the longest exposure time. In the figure
3.8 it is visible that the peaks are different this is produced by the HDR algorithm.
The values in the right figure are not changing much because it is still the same scene.

Class C_ISP
After the data is processed through the sensor the data will be processed in an ISP.
There are lot of options that can be done by an ISP for example different tone map
algorithms or an interpolation between the neighboring pixels. In this implementation
there is a tone mapping implemented. This tone mapping resizes a HDR image with
a big range, range in ISP bits, to an image with a defined tone curve out bits. In the
figure 3.9 the output of an image is compressed from an 20 bit image to an eight bit
image. The equation 3.4 shows the used algorithm. This causes a discretization of
the data which gets visible through the fact that less different values are appearing
in figure 3.9 compared to 3.8. After the discretization the highest possible digital
number is 255 which corresponds to an eight bit image before the tone mapping the
highest possible number was 220-1.

data after ISP = log(1 + data) · 2
tone curve out bits

log(2ISP bits) (3.4)

These eight bit represents the size of separate images used for the HDR image shown
in figure 3.8. Where every single image has a low dynamic range and the created
image has a high dynamic range.

Class C_Image_Quality
That are all classes related to the imaging chain. But there are also some other classes
with functions. One of these is the class C_Image_quality. There are functions
implemented to evaluate the CDP and the SNR to compare the results with each
other. The CDP evaluation is possible for a Pixel to Pixel evaluation and a ROI to

3.2. FUNCTIONS OF THE PROGRAM 17

Figure 3.9.: Program output: Tone mapped eight bit image of the described scene

Figure 3.10.: Program output: All occurring contrasts of the image

ROI comparison it will return a float between zero and one and it returns a plot where
all calculated contrasts of the image occur already shown in section 2.3. The pixel to
pixel evaluation only makes sense when doing a simulation. That is the only use case
which makes sense. In figure 3.10 an example of these charts is plotted. This chart
follows the illustration like the charts before only the unity of the x-axis has switched
to contrast. The float equals the CDP and will be calculated like described in chapter
2.3. For example in this case an epsilon of 0.5 could be used. The Kin in figure 3.10
is 100% so the confidence interval is from 50% to 150% with epsilon = 0.5. So the
CDP value can be calculated like explained in section 2.3. The program output for
this example is 0.66630.

18 3.2. FUNCTIONS OF THE PROGRAM

Figure 3.11.: Program output: CDP progress of the imaging chain

Also the possibility exists to make an evaluation over the whole imaging chain to see
how the components of the imaging chain affects the KPI’s. Examples for these plots
are shown in figure 3.11 and 3.12. The display of figure 3.12 is the same as showed in
section 2.2. The figure 3.11 is how the CDP behaves over the imaging chain.

One other function is to focus on one specified ROI in the image and evaluate the
CDP in this ROI. It is the same function like the CDP function the only difference
is that this function concentrates on a specific region of the image. This region can
be defined in the program. The output equals the output of the CDP function. This
function is useful because CDP is affected by hot and cold pixel and the dark current
specific for each pixel. From this follows that the CDP varies for different regions of
the sensor and different sensors from the same type of sensor because of production
variation. With a bigger ROI this variances could reduce to zero. But still there could
be effects like shading, is an effect which appears at the borders of the sensor, or a
fixed pattern noise which varies the CDP.

3.2.2. CDP evaluation with Images

Also real world images should be included to evaluate the CDP of these images.
Therefore some functions are implemented. The application file for this part is Im-
age_CDP_evaluation. In this part the functions from Image_Processing are used.
In the program are implemented the following functionalities:

3.2. FUNCTIONS OF THE PROGRAM 19

Figure 3.12.: Program output: SNR progress of the imaging chain

- Load an image and convert it to the data type C_IOData

- Recalculation of the image to the physical domain

- Convert an array to an image

- Draw two different ROIs

To load an image it has to be saved to the folder Images to evaluate and the function
has to be called. Then it will be converted to a data structure C_IOData which fits
the requirements of the program. A recalculation part for the images to transform it
to the physical domain. Therefore the specification of the camera has to be defined
in the program.
To test these function it was made a experiment. Therefore a camera from type Manta
G-505C serial number 503363706, a Kowa LM6NCL lens, a 1000% checkerboard,
mounting equipment and a optical table were constructed like shown in figure 3.13.
Because luminance is the used domain it is not important to have the distance between
the objects.
The luminance of the four defined regions shown in figure 3.13 through the small
rectangles were measured with the Luminance Meter Minolta LS-110 serial number
73323007. Afterwards the taken image from the camera was loaded to the function
and the luminance of the regions was calculated by the program. The measured results
were not the same like the calculated results. This was caused by missing parameters

20 3.2. FUNCTIONS OF THE PROGRAM

Figure 3.13.: Experimental construction

of the camera specification. The results of the measured luminance and the calculated
are shown in table 3.1. Right and left are defined when standing with the face to the
checkerboard. It is visible that there is a difference between the results so this can
be an approach and no perfect calculation. Most of the parameters of the camera
were estimated. To make an good calculation it is necessary to have nearly the whole
definition of the used camera system by hand so the calculated luminance will be more
exact.

Position of rectangle Measured in cd/m2 Calculated in cd/m2

Upper right 75.6 100.4
Upper left 356 542.72
Lower right 33.6 48.7
Lower left 412 570

Table 3.1.: Measured and calculated luminance of the checkerboard

It is also possible to plot the picture as a three dimensional plot the function is called
Plot3D. The generated chart is an html data type to show this data type a suitable
program has to be installed for example Internet Explorer, Firefox or others.
With this specified data all functions from the class image quality can be used. In the
file Image_processing a function to process simulated data into an image to show the
evaluated contrast is implemented. In figure 2.3 are two of these generated pictures
shown. In figure 3.14 it is shown how ROIs can be defined through the program.

3.2. FUNCTIONS OF THE PROGRAM 21

Figure 3.14.: Program output: Define ROI

With the left mouse button the corners of the ROI will be defined and the ROI can
be closed by clicking the right mouse button. It is necessary to draw two different
ROIs. With theses ROIs the CDP between these ROIs can be evaluated. If the
multiplication of the both sizes of lists is smaller than 360 Million. Every pixel will be
evaluated to every pixel. Otherwise the smaller ROI will be randomly resized to the
size of the bigger one by extending with the data of the array. And the contrast will
be evaluated. This resizing is necessary because lists in python are limited through
the RAM and the system where python is installed. Also it makes sense because if
the ROIs are that big. Noise does not have a big impact on the result of CDP. The
CDP evaluation gave a results of 0.712712 for the used parameters of this evaluation.

3.2.3. Video CDP evaluation

Also a python application exists to split a video in frames and evaluate the CDP for
every frame. The video has to be stored in the folder Videos to evaluate. The frames
will be also stored in this folder in a new created sub folder named like the video.
The results of the CDP evaluation of these frames will be stored in a xls sheet in
the folder XLS results. In the frame evaluation the pixel to pixel evaluation is used

22 3.2. FUNCTIONS OF THE PROGRAM

because the implementation of the ROI to ROI evaluation is difficult. This is caused
by the movement of the objects in the video. Which leads to the consequence that
the evaluated ROIs have to be consequently new defined in each frame. There are
already algorithms to find the regions in a video but most of them are not public
and it was not possible to develop a algorithm. Also a basis to evaluate the CDP to
is needed which makes the CDP evaluation in a video more complicated because a
reference measurement with a luminance camera is needed. This makes a experimental
construction more complex.

23

4. Application and limits of CDP

It was planned to use CDP as a metric to evaluate the quality of a new defined
simulation model for lenses. But there occurred a lot of challenges which have to be
solved.
One challenge is to define the correct region where the evaluation has to be done
because in a single image or frame it has to be a ROI to ROI evaluation. A pixel
to pixel evaluation in an image would not measure CDP but something else which
has nothing in common with CDP. This was caused by a misunderstanding of CDP
because it was assumed that CDP is a Pixel to Pixel evaluation but after talking to
the author of the CDP paper it was clear that CDP is a ROI to ROI evaluation.
To do this the idea was to use a superpixel or contour detection but then the CDP
depends on this model. Then every supplier would implement their own superpixel
or contour detection model. This will cause problems because it is not possible to
compare the CDP from camera system A with the CDP of camera system B because
they could have used different models. So the results are not comparable because
one supplier could have a better contour detection than camera B in view of CDP
but a worse camera specification in view of CDP. The other one could have it the
reversed way but the CDP result of whole system could be the same. Also a superpixel
or a contour detection model is like introducing a threshold to make it easier to
measure. And once a threshold is introduced other suppliers start to introduce their
own threshold. So after a small time of practicing CDP there are a lot of different
threshold and the idea of CDP has gone.
It makes sense to use CDP in an ideal environment where every variable is known and
manageable to calculate a more accurate CDP value and a value which is comparable
to other components. The ROI can be defined accurate and also other aspects like for
example veiling glare are under control. This is important because CDP is influenced
by a lot of variables. Also CDP is only valid for the one investigated component due
to production variances. But it is expectable that the CDP does not varies in a big
range for the production series. With a big number of different samples the evaluated
production series could be defined in case of CDP like a normal distribution with a
mean of 0.75 and deviation of 0.01 under the given surroundings. This is useful to

24

define the requirements which have to be fulfilled by the supplier.
The next challenge is to have a basis to evaluate the CDP to. In the simulation a
contrast is defined and it can be simulated nearly perfect and the defined scene shows
only this contrast. But in real world there are lots of variables to take into account
to get the original contrast of objects because the contrast is influenced by the color
of objects and the pollution of the object. Also the contrast of a lot of objects is not
the same contrast like in a clean environment. For example a dirty traffic sign doesn’t
have the expected value like a clean one also other variables influence the contrast
of the traffic sign for example the age, date of production and others. So it would
be useful to take an image with an luminance camera to get the correct contrast to
evaluate to. If no image with a luminance camera is taken the evaluation will look
at this defined and expected contrast and because of the defined confidence interval
the CDP could have the correct value for the scene itself. But the CDP evaluation
of the processed image of the scene and the processed simulation will not be logical
if both are compared to each other. Because it is expectable that both values should
be nearly the same. But the confidence interval has to be shifted in case of the taken
image because the evaluation is looking at the wrong basis of the contrast.
After the implementation of an image evaluation the same was done for a video. But
there are occurring the same challenges like they are occurring in a single image. Also
it is more complicated to define the evaluated ROI because of the movement of the car
the ROI is changing every frame. This challenge is already solved in other use cases
but they are not implemented in this program. Also there the CDP value depends
of the quality of these recognition algorithms. One other concern is to have basis to
evaluate to. Which makes the measurement more complicated because normally it
would require a measurement with a luminance camera to have a basis.

25

5. CDP simulation with different parameters

In this chapter CDP will be simulated with different parameters to show their influ-
ences on CDP. Therefore the program has been simulated with two different contrasts
and the variables around these contrast have been changed differently to show the
effects on CDP.

Parameter Values Values

Contrast 30 % 100 %
Intensity 1 cd/m2 10 cd/m2

Temperature 50 °C 100 °C
Exposure time 10 ms 15 ms
Pixel Pitch 2 µm 3 µm

Table 5.1.: The different Parameters of CDP evaluations

In table 5.1 are shown the different evaluated parameters and in table 5.2 are the
parameters which did not change. Of course it would make sense to show the CDP in
dependency on every variable but that would be a high amount of different settings.
To show the generated effects on CDP for the above parameter different settings have
been simulated. Every result is not 100% reproducible because in the program are
different random poisson processes which generate different data for each function call
so the results will vary. It have been done different evaluation to show the variance
between the measurements. It were made fifteen samples the mean was 0.681248141
with a standard deviation of 3.51974 · 10−5 for the third setting in table 5.3.

26

Parameter Value

Windscreen transmittance 0.96
Veiling glare percentage 100 %

F-number 2
Optic transmission 0.9
Quantum efficiency 0.7
Full well capacity 15000 electrons

K-Factor 0.25
Row wise dark current 5 electrons

Column wise dark current 10 electrons
Pixel wise dark current 35 electrons
Doubling Temperature 10 °C

ADC bits 12
ISP bits 20
epsilon 0.5

Table 5.2.: The general used setting

The settings in table 5.2 have been used for all following evaluations only the men-
tioned parameters in table 5.1 will differ. The used parameters are already explained
in section 3.2.1. The K-Factor and the doubling temperature have been used accord-
ing to the EMVA 1288. All these simulation have been done from scene to imager like
shown in figure 2.1. This includes scene, windscreen, optics and imager.

With the result in table 5.3 and comparing the fourth with the fifth it is visible that
smaller contrasts are more difficult to detect because most of the times CDP is lower
than for higher contrasts. This is caused by the smaller difference between the ROIs.
The main reason for this behavior is that the dark current is influencing the contrast
more than it would do with higher contrasts. Also it is visible that the dark current
effects the CDP a lot for example the CDP decreases if a higher dark current is added
to the signal. In this example the higher value of the dark current is simulated through
a higher temperature which causes a more dark electrons because the dark current
depends on the temperature. This effect is described in this program by equation
5.1[3]. For example compare the first to the second result.

µdark_temp = µdark · 2
T−Tref

Tdoubling (5.1)

27

P
ar
am

et
er

V
al
ue

V
al
ue

V
al
ue

V
al
ue

V
al
ue

V
al
ue

V
al
ue

V
al
ue

C
on

tr
as
t

10
0
%

10
0
%

10
0
%

10
0
%

30
%

30
%

30
%

30
%

In
te
ns
ity

1
cd
/m

2
1
cd
/m

2
10

cd
/m

2
1
cd
/m

2
1
cd
/m

2
1
cd
/m

2
1
cd
/m

2
10

cd
/m

2

Te
m
pe

ra
tu
re

50
°C

10
0

°C
10

0
°C

10
0

°C
10

0
°C

10
0

°C
50

°C
50

°C
E
xp

os
ur
e
ti
m
e

10
m
s

10
m
s

10
m
s

10
m
s

10
m
s

15
m
s

15
m
s

15
m
s

P
ix
el

P
it
ch

2
µ
m

2
µ
m

2
µ
m

3
µ
m

3
µ
m

3
µ
m

3
µ
m

3
µ
m

C
D
P

0.
82

87
19

8
0.
15

23
09

0
0.
68
16

22
5

0.
23

25
48

9
0.
15

82
78

43
0.
15

78
06
4

0.
84

20
46

8
0.
99

83
42

05

T
ab

le
5.

3.
:
D
iff
er
en
t
C
D
P

ev
al
ua

ti
on

s

28

So the CDP would not increase just by decreasing the dark current the temperature
has to stay at a comparable level. It is possible to decrease the temperature to
optimize the CDP. One other effect caused by the dark current is that just increasing
the exposure time does not automatically increase the CDP, see results five and six,
because the dark current also depends on the exposure time so the signal is still
distorted.
But if the scene has a higher intensity the CDP increases a lot because then the dark
current and other disruptive factors does not have a big influence on the CDP see
results of the measurements two compared to three. But if the sensor reaches its full
well capacity the CDP value falls to zero because all contrasts haven been gone.
The CDP can be optimized by increasing the pixel pitch compare the second to fourth
evaluation. But normally with a bigger pixel pitch the dark current specific for each
pixel increases. This is caused because the materials have a bigger surface area which
causes new dark electrons.

29

6. Summary

At the beginning of this thesis an exemplary imaging chain was explained. In this
thesis the imaging chain exists of a windscreen, an optic, an imager, and an ISP. In
every part of the imaging chain are done different processing steps for example in the
imager an optical electronic conversion or clipping can be done. The functionality of
these steps have also been described.

The thesis focuses on CDP so it was explained what the definition of CDP means.
The definition is shown in equation 6.1.

CDPKin
= Prob(Kin(1 − ε) ≤ Kmeas. ≤ Kin(1 + ε)) (6.1)

It is also important that all the used contrasts are given as Weber contrast. The result
of CDP will be between zero and one.

The main part of this thesis is about the implementation of a program to evaluate
the CDP on taken images or simulate the CDP with given camera specifications. It
exists of different classes these classes represent all mentioned parts of the imaging
chain, a class for image quality and classes for video and image processing. Also there
are three application files whose show how to use the written functions and how the
display of the output looks like.

Also it was mentioned that CDP is a ROI to ROI evaluation. This is important to
know because some specific use cases are not possible to implement in an useful way.
So an evaluation with a video is difficult to implement because the interesting ROIs
are changing in a driving scene every frame. Of course it is already possible to do
this. But this was not part of this thesis. The most problematic thing about this is
that it has to be done a measurement to have a basis contrast to evaluate to. This
would led to a very complicated experimental set up.

After this was done a CDP evaluation for different parameters was done to show the
effects of these parameters on CDP. One conclusion was that higher contrast are easier
to detect because the effects of the dark current and other disruptive factors do not
have a big impact on the picture because the contrast difference between the ROIs is
big enough to not led the measured contrast fall out of the confidence interval. One

30

other conclusion was that the dark current does affect the CDP a lot and is one main
reason for very low CDP because CDP is a noise influenced KPI. Also it was visible
that longer exposure times does not led to an automatically increased CDP. If the
values of the signal and dark current are similar the CDP will stay at the same value.
There have already been some talks about CDP which show the positive things of
CDP for example there have been some at the Autosens [6][10]. The developing will
go further and it will be introduced with the Project P2020 of the IEEE as an useful
KPI.

31

A. Code export from Python

Appendix 1: CDP Simulation

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Jun 22 09:34:58 2018

4

5 @author: lueb5102

6 to run this programm PIL(image , install with "install pillow"), cv2 ,

7 matplotlib , numpy and xlwt have to be installed on the system

8 """

9

10 from PIL import Image

11 import numpy as np

12 import functions.C_IOData as Data

13 import functions.C_Scene as Scene

14 import functions.C_Windscreen as Windscreen

15 import functions.C_Optics as Optics

16 import functions.C_Sensor as Sensor

17 import functions.C_ISP as ISP

18 import functions.C_Image_quality as IQ

19 import functions.C_Test as Test

20 import functions.Video_processing as Video_processing

21 import functions.Image_processing as Image_processing

22 import matplotlib.pyplot as plt

23

24

25 ###

26 """ This part of the program is a simulation over the whole imaging chain

27 there is no real world input """

28

29 """ Evaluation for different illumination scenarios.

30 To show the dependancy of the Scene intensity """

31

32

32 """ scene_intensities_patch = np.logspace (-3,9,200)

33 CDP = np.zeros_like(scene_intensities_patch)

34 CDP_scene = np.zeros_like(scene_intensities_patch)

35 SNR = np.zeros_like(scene_intensities_patch)

36 for scene_intensity , idx in zip(scene_intensities_patch , range(len(

37 scene_intensities_patch))):

38 Samples = int (126420)

39 Test_Scene = Scene.C_Scene(scene_intensity , Samples)

40 Output_Scene = Test_Scene.get_Output ()

41 for i in range (0, Samples):

42 if i % 2==0:

43 Output_Scene.data [i] = 1* Output_Scene.data[i]

44 Output_Scene.cd_m2 [i] = 1* Output_Scene.cd_m2[i]

45 else:

46 Output_Scene.data [i] = 2* Output_Scene.data[i]

47 Output_Scene.cd_m2 [i] = 2* Output_Scene.cd_m2[i]

48

49 Test_Windscreen = Windscreen.C_Windscreen(20,

50 0.96)

51 Windscreen_Output = Test_Windscreen.get_Output(Output_Scene)

52 Test_Optic = Optics.C_Optics(2, 0.9)

53 Optic_Output = Test_Optic.get_Output(Windscreen_Output)

54

55 exposureTime_s1 =3e-3

56 exposureTime_s2 =5e-3

57 exposureTime_s3 =7e-3

58 pixel_pitch_m =2e-6

59 quantum_efficiency =0.7

60 full_well =15000

61 K=0.25

62 temp =100.

63 mu_dark =35.

64 row_dark_current = 5

65 column_dark_current = 10

66 doubling_temp =10

67 ADC_bits =12

68 ISP_bits = 20

69 number_of_pixel_x = 301

70 number_of_pixel_y = 420

71

33

72 Test_Sensor = Sensor.C_Sensor(

73 pixel_pitch_m ,

74 quantum_efficiency ,

75 full_well ,

76 K,

77 temp ,

78 mu_dark ,

79 row_dark_current ,

80 column_dark_current ,

81 doubling_temp ,

82 ADC_bits ,

83 ISP_bits ,

84 number_of_pixel_x ,

85 number_of_pixel_y)

86 Imager_Output = Test_Sensor.get_Output_with_exposureTime(Optic_Output ,

87 exposureTime_s2)

88

89 CDP[idx], Contrast = IQ.C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

90 Imager_Output.cd_m2 , 100, Test_Sensor)

91 CDP_scene[idx], Contrast = IQ.C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

92 Output_Scene.cd_m2 , 100, Test_Sensor)

93 SNR[idx] = IQ.C_Image_quality.evaluate_SNR_Array(Imager_Output.cd_m2)

94

95

96 plt.figure ()

97 plt.semilogx(scene_intensities_patch , CDP ,CDP_scene)

98 plt.title(’CDP ’)

99 plt.figure ()

100 plt.semilogx(scene_intensities_patch , SNR)

101 plt.title(’SNR ’)

102 """

103 ###

104 "DefinitionsScene"

105 Test_Intensity= 20#5e15

106 Samples = int (126420) #(because the defined Sensorsize is 301*420= 126420)

107 Test_Scene = Scene.C_Scene(Test_Intensity , Samples)

108 Output_Scene = Test_Scene.get_Output ()

109

110 #100% Contrast Checkerbox contrast can also be changed to other contrasts

111 for i in range (0, Samples):

34

112 if i % 2==0:

113 Output_Scene.data [i] = 1* Output_Scene.data[i]

114 Output_Scene.cd_m2 [i] = 1* Output_Scene.cd_m2[i]

115 else:

116 Output_Scene.data [i] = 0.5* Output_Scene.data[i]

117 Output_Scene.cd_m2 [i] = 0.5* Output_Scene.cd_m2[i]

118

119 Output_Scene.doPrint ()

120

121

122 ###

123 "Defnition windscreen"

124 Glare_Percentage = 100

125 #subtraction of the glare photons (incl their uncertainty) decreases the SNR

126 #of the target quantity (e.g. the SNR in cd/m^2)

127 Windscreen_Transmittance = 0.96

128 Test_Windscreen = Windscreen.C_Windscreen(Glare_Percentage ,

129 Windscreen_Transmittance)

130 Windscreen_Output = Test_Windscreen.get_Output(Output_Scene)

131 Windscreen_Output.doPrint ()

132

133

134 ###

135 "Definition optics"

136 F_number = 2

137 Optic_Transmission = 0.9

138 Test_Optic = Optics.C_Optics(F_number , Optic_Transmission)

139 Optic_Output = Test_Optic.get_Output(Windscreen_Output)

140 Optic_Output.doPrint ()

141

142 ###

143 "Definition sensor"

144 exposureTime_s1 =3e-3

145 exposureTime_s2 =15e-3

146 exposureTime_s3 =7e-3

147 pixel_pitch_m =2e-6

148 quantum_efficiency =0.7

149 full_well =15000

150 K=0.25

151 temp =100.

35

152 mu_dark =35.

153 row_dark_current = 5

154 column_dark_current = 10

155 doubling_temp =10

156 ADC_bits =12

157 ISP_bits = 20

158 number_of_pixel_x = 301

159 number_of_pixel_y = 420

160

161 Test_Sensor = Sensor.C_Sensor(

162 pixel_pitch_m ,

163 quantum_efficiency ,

164 full_well ,

165 K,

166 temp ,

167 mu_dark ,

168 row_dark_current ,

169 column_dark_current ,

170 doubling_temp ,

171 ADC_bits ,

172 ISP_bits ,

173 number_of_pixel_x ,

174 number_of_pixel_y)

175

176 Test_class_Sensor = Sensor.C_Sensor(

177 pixel_pitch_m ,

178 quantum_efficiency ,

179 full_well ,

180 K,

181 temp ,

182 mu_dark ,

183 row_dark_current ,

184 column_dark_current ,

185 doubling_temp ,

186 ADC_bits ,

187 ISP_bits ,

188 number_of_pixel_x ,

189 number_of_pixel_y)

190 ’Above one image sensor and now a new one which is defined in the classe C_Test ’

191 Test_own_class = Test.C_Test ()

36

192 Output = Test_own_class.get_Output_with_exposureTime(Optic_Output ,

193 exposureTime_s2)

194 Output.doPrint ()

195

196 ###

197 ’Images with single exposure time’

198 Imager_Output = Test_Sensor.get_Output_with_exposureTime(Optic_Output ,

199 exposureTime_s2)

200 Imager_Output.doPrint ()

201 Imager_Output3 = Test_Sensor.get_Output_with_exposureTime(Optic_Output ,

202 exposureTime_s1)

203 Imager_Output3.doPrint ()

204 image2 = Image_processing.Array_to_image(Imager_Output.data ,

205 Test_Sensor.number_of_pixel_x ,

206 Test_Sensor.number_of_pixel_y)

207

208 ’Resizing of the image to see the checkerboard ’

209 x, y = image2.size

210 newsize = x * 4, y * 4

211 image3 = image2.resize(newsize , resample =Image.NEAREST)

212 image3.show()

213

214 ###

215 "Building a HDR image with n-exposure times wih the sensor Test_own_class"

216 Mode = "Linear"

217 Output_HDR_linear = Test_own_class.get_HDR_Image(Optic_Output ,

218 [exposureTime_s2 , exposureTime_s1 , exposureTime_s3],

219 Input_Mode = Mode)

220 Output_HDR_linear.doPrint ()

221

222 ###

223 ’Building a HDR image with Test_Sensor ’

224 Mode = "Normal"

225 HDR_Output_normal = Test_Sensor.get_HDR_Image(Optic_Output ,

226 [exposureTime_s1 , exposureTime_s2 , exposureTime_s3],

227 Input_Mode = Mode)

228 HDR_Output_normal.doPrint ()

229

230 ###

231 "Definition ISP"

37

232 Defined_ISP = ISP.C_ISP(Test_Sensor)

233

234 ###

235 "Do tonemapping"

236 Tonemap_Output = Defined_ISP.tonemap(HDR_Output_normal)

237

238 ’Produce an image with the tonemapped numbers ’

239 image2 = Image_processing.Array_to_image (Tonemap_Output.data ,

240 Test_Sensor.number_of_pixel_x ,

241 Test_Sensor.number_of_pixel_y)

242

243 ’Resizing the image to get a better display of the image’

244 x, y = image2.size

245 newsize = x * 4, y * 4 #to make the checkerboard visible by increasing the pixel

246 image3 = image2.resize(newsize , resample =Image.NEAREST)

247 image3.show()

248 Tonemap_Output.doPrint ()

249

250 ###

251 "Evaluate contrast of the defined scene after the imager"

252 Contrast_to_evaluate = 100

253 CDP , Contrast = IQ.C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

254 Imager_Output.cd_m2 ,

255 Contrast_to_evaluate ,

256 Test_Sensor)

257 print ("CDP = ", CDP)

258 Contrast.doPrint ()

259

260 ###

261 "Contrast over the whole imaging chain at 100%"

262 IQ.C_Image_quality.evaluation_CDP_imaging_chain(

263 Contrast_to_evaluate , Input_Sensor = Test_Sensor ,

264 Input_Scene = Output_Scene.cd_m2 ,

265 Input_Windscreen = Windscreen_Output.cd_m2 ,

266 Input_Optics = Optic_Output.cd_m2 ,Input_Imager = Imager_Output.cd_m2 ,

267 Input_HDR = HDR_Output_normal.cd_m2 ,

268 Input_Tonemap = Tonemap_Output.cd_m2)

269

270 ###

271 "SNR evaluation of the whole imaging chain"

38

272 IQ.C_Image_quality.evaluation_SNR_imaging_chain(

273 Output_Scene.data , Input_Windscreen = Windscreen_Output.data ,

274 Input_Optics = Optic_Output.data , Input_Imager = Imager_Output.data ,

275 Input_HDR = HDR_Output_normal.data ,

276 Input_Tonemap = Tonemap_Output.data)

277

278 plt.show()

Appendix 2: Image CDP evaluation

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed May 9 10:15:35 2018

4

5 @author: lueb5102

6 to run this programm PIL(image), cv2 , matplotlib , numpy and xlwt have

7 to be installed on the system

8 In Spyder this part of the program does not run. There is some Problem with

9 QT Application. It is running correctly by using the cmd of windows.

10 """

11 from PIL import Image

12 import numpy as np

13 import functions.C_IOData as Data

14 import functions.C_Scene as Scene

15 import functions.C_Windscreen as Windscreen

16 import functions.C_Optics as Optics

17 import functions.C_Sensor as Sensor

18 import functions.C_ISP as ISP

19 import functions.C_Image_quality as IQ

20 import functions.C_Test as Test

21 import functions.Video_processing as Video_processing

22 import functions.Image_processing as Image_processing

23 import plotly

24 import matplotlib.pyplot as plt

25

26

27 ############################

28 ’Example real world image ’

29 """ The function opens and writes the data of the Image into an array and shows

30 the image in 2D"""

31 image_focus = Data.C_IOData ()

39

32 image_focus.data , number_of_pixel_x , number_of_pixel_y = Image_processing.Image_to_Array(

33 ’img_focus.png’)

34

35 "do not run this part if you computer hasn’t at least 16GB Ram."

36 "The image is also resized to 1000 Pixel in y-Direction. This part takes a while."

37 Image_processing.plot3D (image_focus.data , number_of_pixel_x = number_of_pixel_x ,

38 number_of_pixel_y = 1000)

39

40 ###

41 ’ Definition of the spezification camera ’

42 Camera_Spezifikation = Data.C_IOData ()

43 Camera_Spezifikation.ADCBits = 12

44 Camera_Spezifikation.Exposure_Times = [5e-3]

45 Camera_Spezifikation.quatum_efficieny = 0.4

46 Camera_Spezifikation.sensorsize = 3.45e-6

47 Camera_Spezifikation.F_number = 2.6

48 Camera_Spezifikation.K = 1

49 Camera_Spezifikation.data = image_focus.data

50 Camera_Spezifikation = Image_processing.DN_to_cd_m2conversion(Camera_Spezifikation)

51 Camera_Spezifikation.doPrint ()

52

53 ###

54 "Define a ROI"

55 Point1 = [2100 ,2000]

56 Point2 = [100 ,100]

57 Contrast_to_evaluate = 1000

58 Contrast_ROI = Data.C_IOData ()

59

60 """ There will be a rectangle between the both points , which will also be shown

61 as a single image """

62 CDP_in_ROI , Contrast_in_ROI = IQ.C_Image_quality.evaluate_CDP_ROI (

63 Point1 , Point2 , Camera_Spezifikation , Contrast_to_evaluate ,

64 number_of_pixel_x = number_of_pixel_x ,

65 number_of_pixel_y = number_of_pixel_y)

66 #Xsize/Ysize of the picture itself the size is defined above

67 print("CDP_ROI = ", CDP_in_ROI)

68

69 ###

70 ’CDP evaluation for the complete image’

71 CDP , Contrast = IQ.C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

40

72 Camera_Spezifikation.cd_m2 , Contrast_to_evaluate ,

73 number_of_pixel_x = number_of_pixel_x ,

74 number_of_pixel_y = number_of_pixel_y)

75

76 print ("CDP = ", CDP)

77 Contrast.doPrint ()

78

79 plt.show()

80

81 ###

82 #this function is not running in Spyder , because there are some problems with the interface

83 #but it does run with the cmd Editor in windows

84 "This function gives an interface to define two different ROIs by clicking into"

85 "the image. Afterwards the CDP between these ROIs is evaluated."

86 Name_Image = ’img_focus.png’

87 ROI1 , ROI2 = Image_processing.draw_ROI(Name_Image)

88 ROI1cd_m2 = Camera_Spezifikation.cd_m2_function(ROI1)

89 ROI2cd_m2 = Camera_Spezifikation.cd_m2_function(ROI2)

90 CDP_ROI_to_ROI , Contrast_ROI = IQ.C_Image_quality.evaluate_CDP_ROI_to_ROI(

91 ROI1cd_m2 , ROI2cd_m2 , 1000)

92 print (CDP_ROI_to_ROI)

93 SNR = IQ.C_Image_quality.evaluate_SNR_ROI(ROI1cd_m2)

94 print("SNR = ", SNR)

95

96 ###

97 "Open the image and convert it to an array"

98 Name_Image = ’img_focus.png’

99 image_focusdata , number_of_pixel_x , number_of_pixel_y = Image_processing.Image_to_Array(

100 Name_Image)

101

102

103 """ The spezifikation of the camera is defined above. We are now changing the

104 input data."""

105 Camera_Spezifikation.data = image_focusdata

106 Camera_Spezifikation = Image_processing.DN_to_cd_m2conversion(Camera_Spezifikation)

107 Camera_Spezifikation.doPrint ()

108

109 CDP , Contrast= IQ.C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

110 Camera_Spezifikation.cd_m2 , Contrast_to_evaluate , number_of_pixel_x =

111 number_of_pixel_x , number_of_pixel_y = number_of_pixel_y)

41

112 print ("CDP = ", CDP)

113 #Contrast.doPrint ()

114 plt.show()

115

116

117 ###

118 """ Contrast evaluation for a range of contrast with a stepsize which has to

119 defined """

120 CDP_Row , Contrasts = IQ.C_Image_quality.evaluation_from_x_to_y (

121 Camera_Spezifikation.cd_m2 , Start = 10, Stop = 100, Stepsize = 25,

122 number_of_pixel_x = number_of_pixel_x ,

123 number_of_pixel_y = number_of_pixel_y)

124

125 CDP_Row2 , Contrasts = IQ.C_Image_quality.evaluation_from_x_to_y (

126 Camera_Spezifikation.cd_m2 , Start = 10, Stop = 100, Stepsize = 25,

127 number_of_pixel_x = number_of_pixel_x ,

128 number_of_pixel_y = number_of_pixel_y)

129 print (CDP_Row , Contrasts)

130 print (CDP_Row2 , Contrasts)

131

132 ###

133 "Write the results above this function in an excel sheet"

134 CDPs = np.array ([CDP_Row , CDP_Row2]) # input of CDP with different Pictures

135 #with the same evaluated Contrasts

136 #Contrasts = the evaluated Contrasts of the CDPs above

137 IQ.C_Image_quality.write_to_xls(Contrasts , CDPs , name_of_sheet = "results")

138 #returns the results above in a xls datei

139 plt.show()

Appendix 3: Video CDP evaluation

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Jun 22 09:36:07 2018

4

5 @author: lueb5102

6 to run this programm PIL(image), cv2 , matplotlib , numpy and xlwt have

7 to be installed on the system

8 """

9 from PIL import Image

10 import numpy as np

42

11 import functions.C_IOData as Data

12 import functions.C_Scene as Scene

13 import functions.C_Windscreen as Windscreen

14 import functions.C_Optics as Optics

15 import functions.C_Sensor as Sensor

16 import functions.C_ISP as ISP

17 import functions.C_Image_quality as IQ

18 import functions.Video_processing as Video_processing

19 import functions.Image_processing as Image_processing

20

21 ###

22 ’ Definition of the camera spezifikation ’

23 Camera_Spezifikation = Data.C_IOData ()

24 Camera_Spezifikation.ADCBits = 12

25 Camera_Spezifikation.Exposure_Times = [5e-3]

26 Camera_Spezifikation.quatum_efficieny = 0.4

27 Camera_Spezifikation.sensorsize = 3.45e-6

28 Camera_Spezifikation.F_number = 2.6

29 Camera_Spezifikation.K = 1

30

31 "This is the evaluation of a real world video "

32 Name_of_Scene = "Snapchat -374723380. mp4"

33 Sheet_Name = "Video"

34

35 ’’’The results of this function will be written into an xls -sheet with the name

36 of Sheet_name

37 ’’’

38 Video_processing.Video_CDP_evaluation_from_x_to_y (Name_of_Scene ,

39 Camera_Spezifikation , Start = 10,

40 Stop = 30, Stepsize = 10,

41 Name_of_sheet = Sheet_Name)

Appendix 4: Class C_IOData

1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu May 3 12:53:55 2018

4

5 @author: lueb5102

6 """

7

43

8

9

10 import numpy as np

11 import matplotlib.pyplot as plt

12 from decimal import *

13

14 #Data Class: input and output of each block in the imaging chaine

15 class C_IOData:

16 # Data Contrainer and Printing abilities.

17

18 # Idea: *The data numbers change when the signal passes though the imaging chain.

19 # *The cd/m^2 represents always the best reconstruction of the original

20 # scenes cd/m^2 value

21 # - it changes as well (e.g. if quantization of the data happens)

22 def __init__(self):

23 self.info_str = "emtpy info -string"

24

25 # number representation of the current scene:

26 self.data = np.array (0)

27 self.datatype_str = "invalid"

28

29 # sometimes it is better to recalculate later , therefore use

30 self.stochaticProcess = "invalid"

31 #self.data_expectValue = 0

32

33

34 #Backtransformation into the scene intensity given in cd per square metre in

35 self.cd_m2_function = 0

36 self.cd_m2 = np.array(self.data)

37 #these data is necessary to recalculate from Image Data to cd/m^2

38 self.Exposure_Times = np.array (0)

39 self.Sensorsize = 0

40 self.quatum_efficieny = 0

41 self.mu_dark = 0

42 self.temp = 25

43 self.K = 1

44 self.ADCBits = 0

45 self.Tonemap_algorithmus = 0

46 self.ISP_bits = 0

47 self.full_well = 0

44

48 self.transmission_Optics = 1

49 self.transmission_Windscreen = 1

50 self.glare_photons = 0

51 self.F_number = 0

52

53 def doPrint(self):

54 ’’’

55 Prints the plots of the data

56 ’’’

57 print(">----- Start ------<")

58 print(self.info_str)

59 print(">------ End -------<")

60 self.get_plot ()

61

62 def get_ProbablityFunction(self , Data , SampleMax = 10000):

63 ’’’

64 Calculates the Probability Function

65 Data: Array -Like. With the input data for the plot.

66 SampleMax: Integer. With the number of samples in data.

67

68 returns:

69 X_Data: Array -Like. The data for the plot of the x-Axis.

70 Prob_Fkt: Array -Like. The data for the plot of the y-Axis.

71

72 ’’’

73

74 InputData = Data.flatten ()

75 InputDataCount = len(InputData)

76 SampleCnt = np.minimum(SampleMax , InputDataCount)

77

78 print("UsedSamples =", SampleCnt)

79

80 x_Data = np.sort(Data)

81

82 Prob_Fkt = Data

83

84 Prob_Fkt = Prob_Fkt.astype(float)

85 size = np.size(Data)

86

87 for i in range (0, size):

45

88 Prob_Fkt [i] = 1/size

89

90 Prob_Fkt = np.cumsum(Prob_Fkt)

91

92 print("get_ProbablityFunction -Done")

93

94 return x_Data , Prob_Fkt

95

96 def get_DensityFunktion(self , x_Axis , DataIN):

97 ’’’

98 Calculates the density function for the input data. Sometimes the

99 presentation of the plots is not good enough. Therfore some other solutions

100 have been tried but these solutions are not that good and have to be

101 fixed. They have been commented off the program.

102 x_Axis: Array -Like. Generated from the probability function.

103 DataIN: Array -Like. Y-Axis of the probability function.

104

105 returns:

106 OutX_Axis: Array -Like. The X-axis data of the density function.

107 DensityFkt: Array -Like. The Y-axis data of the density function.

108 BarWidth: Array -Like. The width of each bar.

109

110 ’’’

111

112 ’’’if np.size(np.unique(x_Axis)) > 50000000:

113 hist , bins = np.histogram(x_Axis , bins =200)

114 width = (bins [1] - bins [0])

115 center = (bins [:-1] + bins [1:]) / 2

116 hist = hist/np.max(hist)

117 return center , hist , width

118

119 else:’’’

120 print ("test",np.size(np.unique(x_Axis)))

121 bins = np.minimum (700, np.size(np.unique(x_Axis)))

122 if self.cd_m2_function == (0):

123 print("contrast")

124 hist , bins = np.histogram(x_Axis , bins =500, range = (x_Axis.min(),

125 x_Axis.max ()*0.95))

126 if np.size(np.unique(x_Axis)) < 20:

127 hist = np.zeros_like(np.unique(x_Axis))

46

128 unique = np.unique(x_Axis)

129 center = unique

130 for i in range (0, np.size(unique)):

131 for j in range (0,np.size(x_Axis)):

132 if unique[i] == x_Axis[j]:

133 hist[i] = hist[i]+1

134 else:

135 hist , bins = np.histogram(x_Axis , bins = bins)

136 width = np.diff(bins)

137 center = (bins [:-1] + bins [1:]) / 2

138

139

140 if np.size(np.unique(x_Axis)) < 20:

141 width = np.ones_like(unique)*0.5

142

143 if np.size(np.unique(x_Axis)) > 5000:

144 width = width * 3

145

146 else:

147 width = width

148

149 #print(bins)

150 hist = hist/np.max(hist)

151 return center , hist , width

152

153 """ hilfsvariable = np.size(np.unique (x_Axis))

154 if hilfsvariable < 30:

155 hilfsvariable = 50

156 if hilfsvariable > 100:

157 hilfsvariable = 100

158

159 x_AxisLin = np.linspace(x_Axis [0], x_Axis[-1], hilfsvariable)

160

161 Data = np.interp(x_AxisLin , x_Axis , DataIN)

162

163 OutputProbability = np.linspace(0, 1, 1000)

164 OutX_Axis = np.interp(OutputProbability , Data , x_AxisLin)

165

166 # get probability density function

167 DensityFkt = np.diff(OutputProbability)

47

168 BarWidth = np.diff(OutX_Axis)

169

170 BarMask = BarWidth > 0# BarWidthLimit

171 BarMask = np.append(BarMask ,[False])

172

173

174 OutputProbability = OutputProbability[BarMask]

175 OutX_Axis = OutX_Axis[BarMask]

176 ##print (" BarMask -Done")

177

178 DensityFkt = np.diff(OutputProbability)

179 BarWidth = np.diff(OutX_Axis)

180 OutX_Axis = np.delete(OutX_Axis ,0)

181 for i in range (0, OutX_Axis.size):

182 if OutX_Axis [i] == (’nan ’):

183 OutX_Axis [i] = 0

184

185

186 DensityFkt = DensityFkt / BarWidth

187 DensityFkt = DensityFkt / np.max(DensityFkt) *0.75

188

189 return OutX_Axis , DensityFkt , BarWidth """

190 """ else:

191

192 x_Unique = np.unique(x_Axis)

193 #print (x_Unique)

194 #BarWidth = np.ones_like(x_Unique) * np.diff(x_Unique) * 0.5

195 y_Achse = np.zeros_like(x_Unique)

196 for j in range (0, np.size(x_Unique)):

197 for i in range (0, np.size(x_Axis)):

198 if x_Unique [j] == x_Axis [i]:

199 y_Achse [j] = y_Achse[j] + 1

200 print (" Density Done")

201 if np.size(x_Unique)>20:

202 BarWidth = np.ones_like (x_Unique)

203 else:

204 BarWidth = np.ones_like (x_Unique)*0.5

205

206 y_Achse = y_Achse/np.max(y_Achse)

207 return x_Unique , y_Achse , BarWidth """

48

208

209

210 def get_plot(self):

211 ’’’

212 One function for plotting the correct data

213 It is seperated in two parts so that the plots of the data , contrasts ,

214 SNR over the imaging chain and CDP over the imaging chain charts look

215 like each other.

216 ’’’

217

218

219 if self.cd_m2_function == (0):

220 figure , axes = plt.subplots (1,1, figsize =(8 ,5))

221 else :

222 figure , axes = plt.subplots (1,2, figsize =(15 ,5))

223 # get probability function

224 x_AxisProb , ProbFkt = self.get_ProbablityFunction(self.data)

225

226 _mean = np.mean(self.data)

227 _meanSTR = str(Decimal(’{:.2e}’.format(_mean)). normalize ())

228

229 _std = np.std(self.data)

230 _stdSTR = str(Decimal(’{:.2e}’.format(_std)). normalize ())

231

232 if np.std(self.data) != 0:

233 _SNR = _mean/_std

234 else:

235 _SNR = 0

236 _SNRString = str(Decimal(’{:.2e}’.format(_SNR)). normalize ())

237 Legendtitle = "µ=" + _meanSTR + ", std=" + _stdSTR + ":: SNR=" +_SNRString

238

239 #print(" get_ProbablityFunction -Done")

240 x_AxisDens , DensityFkt , BarWidth = self.get_DensityFunktion(x_AxisProb ,

241 ProbFkt)

242 #print(" x_Axis = ",x_Axis)

243

244 if self.cd_m2_function == (0) :

245

246 axes.plot(x_AxisProb , ProbFkt , label="Prob. Fkt.")

247

49

248 axes.bar(x_AxisDens , DensityFkt , width=BarWidth , color="lightgray",

249 label="Probability Density")

250 axes.set_ylim (0 ,1.2)

251 #the xlim must be changed to get a display area which shows all interesting

252 #information

253 axes.set_xlim(x_AxisProb [0], x_AxisProb[int (x_AxisProb.size *0.99)])

254 axes.set_title(self.info_str)

255 axes.set_xlabel(self.datatype_str)

256 axes.set_ylabel("Probability")

257 axes.legend(loc=’upper left’,title=Legendtitle ,prop={’size’:8})

258 return

259 else:

260 axes [0]. plot(x_AxisProb , ProbFkt , label="Prob. Fkt.")

261

262 axes [0]. bar(x_AxisDens , DensityFkt , width=BarWidth ,

263 color="lightgray",label="Probability Density")

264 axes [0]. set_ylim (0 ,1.2)

265 #the display area is greater because otherwise the probability function

266 #is not correctly visible

267 axes [0]. set_xlim(x_AxisProb [0]- ((x_AxisProb [0]+ x_AxisProb [-1])/20)

268 ,x_AxisProb [-1] + ((x_AxisProb [0]+ x_AxisProb [-1])/20))

269

270 axes [0]. set_title(self.info_str)

271 axes [0]. set_xlabel(self.datatype_str)

272 axes [0]. set_ylabel("Probability")

273 axes [0]. legend(loc=’upper left’,title=Legendtitle ,prop={’size’:8})

274

275 x_AxisProb , ProbFkt = self.get_ProbablityFunction(

276 self.cd_m2_function(self.data))

277 #x_AxisProb , ProbFkt = self.get_ProbablityFunction(self.cd_m2)

278 _mean = np.mean(self.cd_m2_function(self.data))

279 _meanSTR = str(Decimal(’{:.2e}’.format(_mean)). normalize ())

280

281 _std = np.std(self.cd_m2_function(self.data))

282 _stdSTR = str(Decimal(’{:.2e}’.format(_std)). normalize ())

283 Legendtitle = "µ=" + _meanSTR + ", std=" + _stdSTR

284

285 if np.std(self.data) != 0:

286 _SNR = _mean/_std

287 else:

50

288 _SNR = 0

289

290 _SNRString = str(Decimal(’{:.2e}’.format(_SNR)). normalize ())

291 Legendtitle = "µ=" + _meanSTR + ", std=" + _stdSTR + ":: SNR=" +_SNRString

292

293 #print(" get_ProbablityFunction -Done")

294 x_AxisDens , DensityFkt , BarWidth = self.get_DensityFunktion(

295 x_AxisProb ,ProbFkt)

296

297 axes [1]. plot(x_AxisProb ,ProbFkt ,label="Prob. Fkt.")

298 axes [1]. bar(x_AxisDens , DensityFkt , width=BarWidth ,

299 color="lightgray",label="Probability Density")

300 #axes [1]. plot(x_AxisDens ,DensityFkt)

301 axes [1]. set_ylim (0 ,1.2)

302 axes [1]. set_xlim(x_AxisProb [0] - ((x_AxisProb [0]+ x_AxisProb [-1])/20

303),x_AxisProb [-1] + ((x_AxisProb [0]+ x_AxisProb [-1])/20))

304 axes [1]. set_title(self.info_str)

305 axes [1]. set_xlabel("cd/m^2")

306 axes [1]. set_ylabel("Probability")

307 axes [1]. legend(loc=’upper left’,title=Legendtitle ,prop={’size’:8})

Appendix 5: Class C_Windscreen

1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu May 3 12:59:48 2018

4

5 @author: lueb5102

6 """

7

8 import functions.C_IOData as Data

9 import numpy as np

10

11 class C_Windscreen:

12 """ Scene: Input scene in cd/m^2

13 Glare photons: Choose from 0 to full sun ;)

14 Tranmission of the windscreen """

15 def __init__(self , glare_photons_percentage =20.,

16 transmission =0.92):

17 self.glare_photons_percentage = glare_photons_percentage

18 self.transmission = transmission

51

19

20 return

21

22 def get_Output(self , DataIn):

23 ’’’

24 DataIn: Data from type C_IOData. Is the data before the windscreen

25

26 returns:

27 Windscreen_Output: Data from type C_IOData. Is the data through the

28 windscreen with veiling glare

29 ’’’

30

31 glare_mean = np.mean(DataIn.data)

32

33 glare_mean = glare_mean * self.glare_photons_percentage /100

34 if(glare_mean > 10e3):

35 #print("Geese [Bosch]: There is a problem here with Gaussian

36 #Numbers and the display of the probability density ")

37

38 # Geese: There was Problem with np.random.normal [doesn’t work for

39 #data with very large numebers e.g. 1e15...]

40 glare_data = np.random.random(DataIn.data.shape)

41 for i in range (0 ,25):

42 glare_data = glare_data + np.random.random(glare_data.shape)

43

44 glare_data = glare_data - np.mean(glare_data)

45 glare_data = glare_data / np.std(glare_data)

46

47 glare_data = glare_data * np.sqrt(glare_mean)

48 glare_data = glare_data + glare_mean

49

50 else:

51

52 glare_data = np.ones_like(DataIn.data)* glare_mean

53 glare_data = np.random.poisson(glare_data)

54

55 intensity_after_windscreen = self.transmission * (DataIn.data

56 + glare_data)

57 intensity_after_windscreen = np.maximum(0, intensity_after_windscreen)

58 Windscreen_Output = Data.C_IOData ()

52

59 Windscreen_Output.data = intensity_after_windscreen

60 Windscreen_Output.stochaticProcess = "Poisson"

61

62 Windscreen_Output.cd_m2_function = lambda x: DataIn.cd_m2_function (

63 x-glare_mean/self.transmission)

64

65 Windscreen_Output.cd_m2 = Windscreen_Output.cd_m2_function(

66 Windscreen_Output.data)

67

68 Windscreen_Output.datatype_str = "(# photons)/(s*m^2*sr)"

69 Windscreen_Output.info_str = """ This is the data after transmission

70 through the windscreen (with additional glare)"""

71

72 return Windscreen_Output

Appendix 6: Class C_Optics

1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu May 3 13:05:22 2018

4

5 @author: lueb5102

6 """

7

8 import functions.C_IOData as Data

9 import numpy as np

10

11 class C_Optics:

12 """ Jaehne , Sec Ed, page 96,

13 Input: Scene input as a light field

14 Output: incident illuminance [lm/m^2] on sensor (but without angular

15 dependency)"""

16 #illuminance incident on sensor with wavelength (spectral illuminance)

17

18 def __init__(self , f_number =2., transmission =0.9):

19

20 self.f_number = f_number

21 self.transmission = transmission

22 return

23

24 def get_Output(self , DataIn):

53

25 ’’’

26 DataIn: Data from type C_IOData. The input data which is going through

27 the optics

28 returns:

29 Optic_Output: Data from type C_IOData. The data after transmission

30 through the optic.

31

32 ’’’

33 Optic_Output = Data.C_IOData ()

34

35 Conv_Factor_Optics = self.transmission * np.pi * 1.0/(

36 4.0 * self.f_number **2);

37 #Factor for from formel Paper Marc Geese p. 4 calculation transformation

38 #factor for optics

39

40 Optic_Output.data = Conv_Factor_Optics * DataIn.data #in lm/m^2

41

42 Optic_Output.cd_m2_function = lambda x: DataIn.cd_m2_function(

43 x / Conv_Factor_Optics) #Funktion in cd/m^2 Skala

44 Optic_Output.cd_m2 = Optic_Output.cd_m2_function(Optic_Output.data)

45 Optic_Output.datatype_str = "\n(# photons)/(s*m^2)"

46 Optic_Output.info_str = "This is the data after transmission \n through the optics"

47

48 return Optic_Output

Appendix 7: Class C_Sensor

1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu May 3 13:05:56 2018

4

5 @author: lueb5102

6 """

7

8 import functions.C_IOData as Data

9 import numpy as np

10

11 class C_Sensor ():

12 """ Image sensor class """

13 def __init__(self ,

14 pixel_pitch_m =2e-6,

54

15 quantum_efficiency =0.7,

16 full_well =15000 ,

17 K=0.23,

18 temp =50.,

19 mu_dark =35.,

20 row_dark_current = 5.,

21 column_dark_current = 10.,

22 doubling_temp =10.,

23 ADC_bits =12,

24 ISP_bits = 20,

25 number_of_pixel_x = 300,

26 number_of_pixel_y = 420,

27 overall_system_gain = 1,

28 FPN_Pixel_std = 5,

29 FPN_Column_std = 10, FPN_Row_std = 5):

30 """

31 Pixel pitch: Float. Pixel pitch , actually pixel side length in microns.

32 The pixel is a square.

33 Quantum efficiency: Float number. Quatum efficiency of sensor as ratio.

34 Number between 0 and 1

35 Full well capacity:Integer. Number of photoelectrons

36 K: Float. System overall conversion gain --> DN per photoelectron (see

37 EMVA 1288)

38 Temperature:Float. In deg celsius

39 Mu dark: Float. Expected dark current electrons per sec at 25 deg

40 celsius (EMVA 1288)

41 Doubling temp: Float. Doubling temperature (EMVA 1288)

42 ADC: Integer. ADC discretization in bits

43 number of pixel x: Integer. The number of pixel in x-axes

44 number of pixel y: Integer. The number of pixel in y-axes """

45 self.pixel_pitch_m = pixel_pitch_m

46 self.quantum_efficiency = quantum_efficiency

47 self.full_well = full_well

48 self.K = K

49 self.temp = temp

50 self.mu_dark = mu_dark

51 self.row_dark_current = row_dark_current

52 self.column_dark_current = column_dark_current

53 self.reference_temp = 25

54 self.doubling_temp = doubling_temp

55

55 self.ADC_bits = ADC_bits

56 self.ISP_bits = ISP_bits

57 self.overall_system_gain = overall_system_gain

58 self.number_of_pixel_x = number_of_pixel_x

59 self.number_of_pixel_y = number_of_pixel_y

60 self.FPN_Pixel_std = FPN_Pixel_std

61 self.FPN_Column_std = FPN_Column_std

62 self.FPN_Row_std = FPN_Row_std

63

64

65 ###

66 def OEC (self , IO_Data_In , exposure_Time):

67 ’’’

68 This function simulates the Optical electrical Conversion.

69

70 IO_Data_In: Data type from class C_IOData. Is the data after the optics.

71 exposure_Time: Float. The exposure time of the image.

72

73 returns:

74 Data_OEC: Array -Like. Is the data after the optical elctrical

75 conversion.

76 Conv_Factor_Sensor: Float. Is the factor which is generated from

77 the sensor.

78 ’’’

79

80 Conv_Factor_Sensor = (self.pixel_pitch_m **2) * exposure_Time * self.quantum_efficiency

81

82 Data_OEC = IO_Data_In.data * Conv_Factor_Sensor

83

84 return Data_OEC , Conv_Factor_Sensor

85

86 ###

87 def DarkCurrent (self , Data_OEC , exposure_Time):

88 ’’’

89 This function adds dark current to the data after OEC.

90

91 Data_OEC: Array -Like. The data after the OEC -conversion.

92 exposure_Time: Float. The exposure time of the image.

93

94 returns:

56

95 Data_DarkCurrent: Array -Like. The data with added dark current.

96 mu_temp_electrons: Float. The mean of the generated dark electrons.

97

98 ’’’

99

100 dark_current_pixel = np.random.poisson(self.mu_dark , Data_OEC.size)

101 dark_current_pixel = np.random.normal(dark_current_pixel ,

102 self.FPN_Pixel_std)

103 dark_current = np.ones_like(dark_current_pixel)

104 dark_current_row = np.random.poisson(self.row_dark_current ,

105 self.number_of_pixel_y)

106 dark_current_row = np.random.normal(dark_current_row , self.FPN_Row_std)

107 dark_current_column = np.random.poisson(self.column_dark_current ,

108 self.number_of_pixel_x)

109 dark_current_column = np.random.normal(dark_current_column ,

110 self.FPN_Column_std)

111 for i in range (0, self.number_of_pixel_y):

112 for j in range (0, self.number_of_pixel_x):

113 dark_current[i*self.number_of_pixel_x + j] = dark_current_pixel[

114 i*self.number_of_pixel_x + j] + dark_current_row [i

115] + dark_current_column[j]

116

117 mu_dark_sensor = dark_current * 2**((

118 self.temp - self.reference_temp)/self.doubling_temp)

119 mu_temp_electrons = np.mean(mu_dark_sensor) * exposure_Time

120 # Adapt the dark electrons on the exposure time

121 temp_electrons = mu_dark_sensor * exposure_Time

122

123 Data_DarkCurrent = Data_OEC + temp_electrons

124

125 return Data_DarkCurrent , mu_temp_electrons

126

127 ###

128 def Capacitor (self , Data_DarkCurrent):

129 ’’’

130 This function looks up if the capacity is exceeded. And cuts off all

131 data above the capacity .(Clipping)

132 Data_DarkCurrent: Array -Like. The data with the generated dark current.

133

134 returns:

57

135 Data_Capacitor: Array -Like. All electrons over the capacity will be

136 cutted.

137

138 ’’’

139

140 Data_Capacitor = np.minimum (Data_DarkCurrent , self.full_well)

141

142 return Data_Capacitor

143

144 ###

145 def ADC (self , Data_Capacitor):

146 ’’’

147 This functions converts the electrons into digital numbers.

148 Data_Capacitor: Array -Like. This is the Data after the capacitor

149

150 returns:

151 Data_ADC: Data type from class C_IOData. Is the data after analog

152 digital conversion. The data is in integer numbers.

153

154 ’’’

155 #... and convert to DN

156 Data_ADC = Data_Capacitor * self.K

157 Data_ADC = Data_ADC.astype(int)

158

159 #ADC

160 Data_ADC = np.minimum(Data_ADC , 2** self.ADC_bits)

161 Data_ADC = np.maximum(Data_ADC , 0)

162

163 return Data_ADC

164

165 ###

166 def get_Output_with_exposureTime (self , IO_Data_In , exposure_Time):

167 ’’’

168 This function generates output with the given exposure time.

169

170 IO_Data_In: Data type from class C_IOData. Is the data after the optic.

171 exposure_Time: Float. The exposure time for the image.

172

173 returns:

174 Output: Data type from class C_IOData. Is the data with the given

58

175 given exposue time.

176 ’’’

177 IO_Data_In.exposure_times = exposure_Time

178 Data_OEC , ConvFactor_Sensor = self.OEC (IO_Data_In , exposure_Time)

179 Data_DarkCurrent , mu_temp_electrons = self.DarkCurrent (

180 Data_OEC , exposure_Time)

181 Data_Capacitor = self.Capacitor(Data_DarkCurrent)

182 Data_ADC = self.ADC (Data_Capacitor)

183

184 Output = Data.C_IOData ()

185 Output.data = Data_ADC

186 Output.cd_m2_function = lambda x: IO_Data_In.cd_m2_function(

187 ((x / self.K) - mu_temp_electrons)/ ConvFactor_Sensor)

188 Output.cd_m2 = Output.cd_m2_function(Output.data)

189 Output.datatype_str = "DN (Digital Number)"

190 Output.info_str = """ This is the data after \n raw -ADC on the Sensor \n

191 Exposure Time: %s Sekunden """ %exposure_Time

192

193 return Output

194

195

196 ###

197 def get_HDR_Image(self , IO_Data_In , Exposure_Times , Input_Mode = "Normal"):

198 ’’’

199 This function generates a HDR image with n-exposure times.

200

201 IO_Data_In: Array (n*m). This is am array with data for different

202 exposure times.

203 Exposure_Times: Array. There n-exposures possible. But the IO_Data_In

204 has the same n defined.

205 Input_Mode: String. At the moment only "Normal" is existing. But it is

206 possible to implement other HDR algorithms. For example in

207 this function or in a new class.

208

209 returns:

210 Imager_Ouput:Data type from class C_IOData.

211 Is the Input_Data combined to a HDR image.

212

213 ’’’

214

59

215 #Exposure_Times has to be an array

216 if Input_Mode == "Normal":

217

218 Imager_Output = Data.C_IOData ()

219 Exposure_Times = np.sort(Exposure_Times)

220 exposure_ratio = np.array(np.ones_like(Exposure_Times))

221 Imager_Outputdata = [[np.ones_like(

222 IO_Data_In.data)]for _ in range (len (Exposure_Times))]

223 for i in range (0, len(Exposure_Times)):

224

225 Data_OEC , ConvFactor_Sensor = self.OEC (IO_Data_In , Exposure_Times[i])

226 Data_DarkCurrent , mu_temp_electrons = self.DarkCurrent (

227 Data_OEC , Exposure_Times[i])

228 Data_Capacitor = self.Capacitor(Data_DarkCurrent)

229 Data_ADC = Data_Capacitor * self.K

230

231 #ADC

232 Data_ADC = np.minimum(Data_ADC , 2** self.ADC_bits)

233 Data_ADC = np.maximum(Data_ADC , 0)

234 Imager_Outputdata[i] = Data_ADC

235 Imager_Output = Data.C_IOData ()

236 Imager_Output.data = Data_ADC

237 Imager_Output.cd_m2_function = lambda x: IO_Data_In.cd_m2_function(

238 ((x / self.K) - mu_temp_electrons)/ ConvFactor_Sensor)

239 Imager_Output.cd_m2 = Imager_Output.cd_m2_function(Imager_Output.data)

240 Imager_Output.datatype_str = "DN (Digital Number)"

241 Imager_Output.info_str = """ This is the data after \n raw -ADC on the

242 Sensor \n Exposure Time: %s Sekunden """ %Exposure_Times[i]

243 #Imager_Output.doPrint ()

244 if (i < len(Exposure_Times)):

245 Imager_Outputdata [i] = Imager_Outputdata [i] * Exposure_Times [-1]/ Exposure_Times[i]

246 exposure_ratio [i] = Exposure_Times [-1] / Exposure_Times[i]

247

248

249

250 HDR_Reconstruction = Imager_Outputdata [-1]

251 for j in range (0, (len(Exposure_Times))):

252 for i in range (0, len (HDR_Reconstruction)):

253 if HDR_Reconstruction[i] > 2**(self.ISP_bits/len(

254 Exposure_Times)*(j)) :

60

255 HDR_Reconstruction [i] = Imager_Outputdata [len(

256 Exposure_Times)-1-j][i]

257

258 if HDR_Reconstruction [i] < 2**(self.ISP_bits/len(

259 Exposure_Times)*(j+1)):

260

261 HDR_Reconstruction [i] = Imager_Outputdata [len(

262 Exposure_Times)-1-j][i]

263

264

265

266 Imager_Output.data = HDR_Reconstruction * self.overall_system_gain

267

268 Imager_Output.data = np.minimum(HDR_Reconstruction.astype(int),

269 2** self.ISP_bits)

270

271 Imager_Output.cd_m2 = Imager_Output.cd_m2_function(Imager_Output.data)

272 Imager_Output.datatype_str = "DN (Digital Number)"

273 Imager_Output.info_str = "This is the data after HDR Reconstruction"

274

275 return Imager_Output

Appendix 8: Class C_Test

1 # -*- coding: utf -8 -*-

2 """

3 Created on Mon May 28 10:45:37 2018

4

5 @author: lueb5102

6 """

7 import functions.C_IOData as Data

8 import functions.C_Sensor as Sensor

9 import numpy as np

10

11 class C_Test ():

12

13 def __init__(self , K = 0.25, row_dark_current = 5.,

14 column_dark_current = 10., temp = 100, overall_system_gain = 1,

15 number_of_pixel_x = 301, number_of_pixel_y = 420,

16 FPN_Pixel_std = 5,

17 FPN_Column_std = 10, FPN_Row_std = 5):

61

18

19

20 self.pixel_pitch_m = 3e-6

21 self.ADC_bits = 12

22 self.full_well = 15000

23 self.quantum_efficiency = 0.8

24 self.doubling_temp = 10

25 self.reference_temp = 25

26 self.K = K

27 self.mu_dark = 35

28 self.row_dark_current = row_dark_current

29 self.column_dark_current = column_dark_current

30 self.temp = temp

31 self.overall_system_gain = overall_system_gain

32 self.number_of_pixel_x = number_of_pixel_x

33 self.number_of_pixel_y = number_of_pixel_y

34 self.FPN_Pixel_std = FPN_Pixel_std

35 self.FPN_Column_std = FPN_Column_std

36 self.FPN_Row_std = FPN_Row_std

37

38 def OEC (self , IO_Data_In , exposure_Time):

39 ’’’

40 This function uses the function from the sensor class because the

41 calculation is the same.

42 ’’’

43

44 Data_OEC , Conv_Factor_Lightsensor = Sensor.C_Sensor.OEC (self ,

45 IO_Data_In , exposure_Time)

46

47 return Data_OEC , Conv_Factor_Lightsensor

48

49

50

51 def DarkCurrent (self , Data_OEC , exposure_Time):

52 ’’’

53 This function uses the function from the sensor class because the

54 calculation is the same.

55 ’’’

56

57 Data_DarkCurrent , mu_temp_electrons = Sensor.C_Sensor.DarkCurrent (self

62

58 , Data_OEC , exposure_Time)

59

60 return Data_DarkCurrent , mu_temp_electrons

61

62

63 def Capacitor (self , Data_DarkCurrent):

64 ’’’

65 This function uses the function from the sensor class because the

66 calculation is the same.

67 ’’’

68

69 Data_Capacitor = Sensor.C_Sensor.Capacitor (self , Data_DarkCurrent)

70

71 return Data_Capacitor

72

73

74 def ADC (self , Data_Capacitor):

75 ’’’

76 This function uses the function from the sensor class because the

77 calculation is the same.

78 ’’’

79

80 Data_ADC = Sensor.C_Sensor.ADC (self , Data_Capacitor)

81

82 return Data_ADC

83

84

85 def get_Output_with_exposureTime (self ,IO_Data_In , Exposure_Time):

86 ’’’

87 This function uses the function from the sensor class because the

88 calculation is the same.

89 ’’’

90

91 Output = Sensor.C_Sensor.get_Output_with_exposureTime (self ,

92 IO_Data_In , Exposure_Time)

93

94 return Output

95

96 def get_HDR_Image(self , IO_Data_In , Exposure_Times , Input_Mode = 0):

97 ’’’

63

98 In case the Input_Mode is zero or "Normal" this function uses the

99 function from class sensor.

100

101 This function generates a HDR image with n-exposure times. If the

102 Input_Mode is Linear.

103

104 IO_Data_In: Array (n*m). There is the data for each exposure time

105 inside

106 Exposure_Times: Array. There are n-exposures Possible. But the

107 IO_Data_In has to have the same size in n.

108 Input_Mode: String. In this class the mode "Linear" is possible. In

109 case "Normal" or "0" the algorithm from class sensor will

110 be used.

111

112 returns:

113 Imager_Ouput:Data type from class C_IOData.

114 Is the "Input_Data" combined to a HDR image.

115

116 ’’’

117

118 if Input_Mode == "Normal":

119

120 Sensor.C_Sensor.get_HDR_Image (self , IO_Data_In , Exposure_Times ,

121 Input_Mode)

122

123 if Input_Mode == 0:

124

125 Sensor.C_Sensor.get_HDR_Image (self , IO_Data_In , Exposure_Times ,

126 Input_Mode)

127

128

129 if Input_Mode == "Linear":

130

131 Picture = np.ones(len(IO_Data_In.data))

132 Linear = np.array (0)

133 Exposure_Times = np.sort(Exposure_Times)

134 for i in range (0, len(Exposure_Times)):

135 Output = self.get_Output_with_exposureTime(IO_Data_In ,

136 Exposure_Times[i])

137 Picture = Output.data

64

138 Picture = Picture / Exposure_Times[i]

139 Linear = Linear + Picture

140

141 data = Linear / len (Exposure_Times)

142 data = data * np.max(Exposure_Times)

143 Output.data = data.astype(int)

144

145

146 Output.data = Output.data * self.overall_system_gain

147 Output.info_str = "This is the data after HDR Reconstruction"

148

149 return Output

Appendix 9: Class C_Image_quality

1 # -*- coding: utf -8 -*-

2 """

3 Created on Thu May 3 13:08:32 2018

4

5 @author: lueb5102

6 """

7

8 import functions.C_IOData as Data

9 from PIL import Image

10 import functions.C_Sensor as Sensor

11 import functions.Image_processing as Image_processing

12 import numpy as np

13 import matplotlib.pyplot as plt

14 import xlwt

15 import mpl_toolkits.mplot3d.axes3d as p3

16 import os

17 import plotly.plotly as py

18 import plotly.graph_objs as go

19 import plotly

20 import random

21 from random import randint

22

23

24 class C_Image_quality ():

25 ###

26 def evaluate_CDP_Pixel_to_Pixel(CDP_Input , Scene_Contrast , Input_Sensor = 0,

65

27 number_of_pixel_x = 0, number_of_pixel_y = 0):

28 ’’’

29 This function evaluates the CDP from Pixel to Pixel.

30 CDP_Input: Array -Like has to be in cd/m^2.

31 Scene_Contrast: Integer has to be between zero and infinite.

32 Input_Sensor: Data from Class Sensor where number_of_pixel_x and

33 number_of_pixel_y be filled with integer if not filled

34 the variable number_of_pixel_x and number_pixel_y have

35 to have integers inside.

36 number_of_pixel_x: Integer is necessary otherwise Input_Sensor must be

37 existing.

38 number_of_pixel_y: Integer is necessary otherwise Input_Sensor must be

39 existing.

40

41 returns:

42 cdp: Float number in the area 0 to 1. It is the calclated CDP

43 Output: Datatype from class C_IOData , with data and all strings to

44 print the plot.

45 ’’’

46 if Input_Sensor == 0:

47 if number_of_pixel_x == 0:

48 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

49

50 if number_of_pixel_y == 0:

51 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

52

53 else:

54 if Input_Sensor.number_of_pixel_x == 0:

55 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

56 else:

57 number_of_pixel_x = Input_Sensor.number_of_pixel_x

58 if Input_Sensor.number_of_pixel_y == 0:

59 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

60 else:

61 number_of_pixel_y = Input_Sensor.number_of_pixel_y

62

63 ’The confidence_delta is defined in the paper of Marc Geese p.10’

64 confidence_delta = 0.5

65 ’To be sure that all CDP_Input is positive ’

66 CDP_Input = np.maximum(0, CDP_Input)

66

67

68 Contrast = np.ones(2 * CDP_Input.size - number_of_pixel_x - number_of_pixel_y)

69 helping_value = 0

70

71 for i in range (0, CDP_Input.size -1):

72

73

74 if i % number_of_pixel_x == 0 and i != 0:

75 helping_value = helping_value + 1

76

77 else:

78 if CDP_Input [i] > CDP_Input [i+1]:

79 if CDP_Input[i+1] != 0:

80 #the result is already in %

81 Contrast[i - helping_value] = (CDP_Input[i] /

82 CDP_Input[i+1] * 100 - 100)

83 else:

84 Contrast[i - helping_value] = 10000

85

86 else:

87 if CDP_Input[i] != 0:

88 #the result is already in %

89 Contrast[i - helping_value] = (CDP_Input[i+1] /

90 CDP_Input[i] * 100 - 100)

91 else:

92 Contrast[i - helping_value] = 10000

93

94

95 if (i + number_of_pixel_x) < CDP_Input.size:

96 if CDP_Input [i] > CDP_Input [i+ number_of_pixel_x]:

97 if CDP_Input [i + number_of_pixel_x] != 0:

98 #the result is already in %

99 Contrast[i + CDP_Input.size -

100 number_of_pixel_y - helping_value] = (

101 CDP_Input[i] / CDP_Input[i

102 + number_of_pixel_x] * 100 - 100)

103 else:

104 Contrast[i + CDP_Input.size - number_of_pixel_y

105 - helping_value] = 10000

106

67

107 else:

108 if CDP_Input[i] != 0:

109 #the result is already in %

110 Contrast[i + CDP_Input.size - number_of_pixel_y -

111 helping_value] = CDP_Input[i +

112 number_of_pixel_x] / CDP_Input[i] * 100 - 100

113 else:

114 Contrast[i + CDP_Input.size - number_of_pixel_y

115 - helping_value] = 100000

116 #Contrast_after_HDR[i] = Contrast_after_HDR_h[i]

117

118

119

120

121 CDP_Input = CDP_Input.flatten (). astype(np.float)

122 CDP_Input = CDP_Input.flatten (). astype(np.float)

123

124 Lower_Bound = Scene_Contrast - confidence_delta * Scene_Contrast

125 Upper_Bound = Scene_Contrast + confidence_delta * Scene_Contrast

126 Lower_idx = (Contrast < Lower_Bound). astype(np.int)

127 Lower_idx = Lower_idx.sum()

128 Upper_idx = (Contrast < Upper_Bound). astype(np.int)

129 Upper_idx = Upper_idx.sum()

130

131 Output = Data.C_IOData ()

132 Output.datatype_str= "Contrast [%]"

133 Output.info_str = "Contrast evaluation"

134

135 Output.data = Contrast

136

137 cdp = (Upper_idx - Lower_idx) / np.size (Contrast)

138 return cdp , Output

139

140 ###

141 def evaluate_CDP_ROI_to_ROI (ROI_1 , ROI_2 , Scene_Contrast):

142 ’’’

143 This function evaluates the CDP between two defined ROIs.

144 ROI_1: Array -Like has to be in cd/m^2.

145 ROI_2: Array -Like has to be in cd/m^2.

146 Scene_Contrast: Integer has to be between zero and infinite.

68

147

148 returns:

149 cdp: Float number in the area 0 to 1. It is the calclated CDP

150 Output: Datatype from class C_IOData , with data and all strings to

151 print the plot.

152 ’’’

153

154 confidence_delta = 0.5

155 size_contrast = ROI_1.size * ROI_2.size

156

157 if size_contrast < 360000000:

158

159 Contrast = np.ones(size_contrast)

160

161 for i in range (0, ROI_1.size):

162 for j in range (0, ROI_2.size):

163 if np.mean(ROI_1) > np.mean(ROI_2):

164 Contrast[i*j+j] = ROI_1[i]/ROI_2[j] * 100 - 100

165 else:

166 Contrast[i*j+j] = ROI_2[j]/ROI_1[i] * 100 - 100

167

168 else:

169 if ROI_1.shape != ROI_2.shape:

170 if ROI_1.size > ROI_2.size:

171

172 for i in range (ROI_2.size , ROI_1.size):

173

174 ROI_2 = np.append(ROI_2 , ROI_2[randint(0, ROI_2.size -1)])

175

176

177 if ROI_2.size > ROI_1.size:

178

179 for i in range (ROI_1.size , ROI_2.size):

180

181 ROI_1 = np.append(ROI_1 , ROI_1[randint(0, ROI_1.size -1)])

182

183 if np.mean(ROI_1) > np.mean (ROI_2):

184 Contrast = ROI_1 / ROI_2 * 100 - 100 #Weber Contrast in %

185 else:

186 Contrast = ROI_2 / ROI_1 * 100 - 100 #Weber Contrast in %

69

187

188 Lower_Bound = Scene_Contrast - confidence_delta * Scene_Contrast

189 Upper_Bound = Scene_Contrast + confidence_delta * Scene_Contrast

190 Lower_idx = (Contrast < Lower_Bound). astype(np.int)

191 Lower_idx = Lower_idx.sum()

192 Upper_idx = (Contrast < Upper_Bound). astype(np.int)

193 Upper_idx = Upper_idx.sum()

194

195 Output = Data.C_IOData ()

196 Output.datatype_str= "Contrast [%]"

197 Output.info_str = "Contrast evaluation"

198

199 Output.data = Contrast

200

201 cdp = (Upper_idx - Lower_idx) / np.size (Contrast)

202 return cdp , Output

203

204

205

206 ###

207 def evaluate_SNR_Array(SNR_Input_1 , Zero_Signal_Value =0):

208 ’’’

209 SNR_Input_1: Array -Like. The data where the SNR has to be calculated.

210 Zero_Signal_Value: Integer. This number is not necessary.

211

212 returns:

213 SNR: Float

214 ’’’

215

216 for i in range (0, SNR_Input_1.size):

217 if i % 2 == 0:

218 SNR_Input_1[i]= 0

219

220

221 Hilfsarray = SNR_Input_1 > 0

222 SNR_Input_1 = SNR_Input_1[Hilfsarray]

223 if np.std(SNR_Input_1) < 1e-9:

224 SNR = np.inf

225 else:

226 if SNR_Input_1.all () == 0:

70

227 SNR = 10 * np.log10 (0.001)

228 else:

229 SNR = 10 * np.log10((np.mean(SNR_Input_1) - Zero_Signal_Value

230) / np.std(SNR_Input_1))

231 return SNR

232

233

234 ###

235 def evaluate_SNR_ROI(SNR_Input_1 , Zero_Signal_Value =0):

236 ’’’

237 SNR_Input_1: Array -Like. The data where the SNR has to be calculated.

238 Zero_Signal_Value: Integer. This number is not necessary.

239

240 returns:

241 SNR: Float

242 ’’’

243

244

245 if np.std(SNR_Input_1) < 1e-9:

246 SNR = np.inf

247 else:

248 if SNR_Input_1.all () == 0:

249 SNR = 10 * np.log10 (0.001)

250 else:

251 SNR = 10 * np.log10((np.mean(SNR_Input_1) - Zero_Signal_Value

252) / np.std(SNR_Input_1))

253 return SNR

254

255 ###

256 def evaluate_CDP_ROI (Point_1 , Point_2 , ROI_Input , Contrast ,

257 Input_Sensor = 0 , number_of_pixel_x = 0,

258 number_of_pixel_y = 0):

259 ’’’

260 This function evaluates the CDP in a defined ROI.

261 Point1: Tuple -object with x and y Point

262 Point2: Tuple -object with x and y Point

263 ROI_Input: Data from class C_IOData

264 Contrast: Integer or Float. The contrast where the CDP has to be

265 evaluated

266 Input_Sensor: Data from class Sensor where number_of_pixel_x and

71

267 number_of_pixel_y be filled with integer if not filled

268 the variable number_of_pixel_x and number_pixel_y have

269 to have integers inside

270 number_of_pixel_x: Integer is necessary otherwise Input_Sensor must be

271 existing

272 number_of_pixel_y: Integer is necessary otherwise Input_Sensor must be

273 existing

274 returns:

275 CDP: Float whith the calculated CDP for the evaluated contrast

276 Contrast_ROI: Data from type C_IOData to plot the contrast progress

277 ’’’

278 if Input_Sensor == 0:

279 if number_of_pixel_x == 0:

280 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

281

282 if number_of_pixel_y == 0:

283 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

284

285 else:

286 if Input_Sensor.number_of_pixel_x == 0:

287 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

288 if Input_Sensor.number_of_pixel_y == 0:

289 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

290 d = -1

291

292 if Point_2 [0] < Point_1 [0]:

293 Point_help = Point_2 [0]

294 Point_2 [0] = Point_1 [0]

295 Point_1 [0] = Point_help

296

297 if Point_2 [1] < Point_1 [1]:

298 Point_help = Point_2 [1]

299 Point_2 [1] = Point_1 [1]

300 Point_1 [1] = Point_help

301 if Point_1 [0]> number_of_pixel_x:

302 Point_1 [0] = number_of_pixel_x

303 if Point_1 [1]> number_of_pixel_y:

304 Point_1 [1] = number_of_pixel_y

305 if Point_2 [0]> number_of_pixel_x:

306 Point_2 [0] = number_of_pixel_x

72

307 if Point_2 [1]> number_of_pixel_y:

308 Point_2 [1] = number_of_pixel_y

309

310 if Input_Sensor == 0:

311 ROI = Data.C_IOData ()

312

313 ROI.data = np.ones((Point_2 [0] - Point_1 [0]) * (

314 Point_2 [1] - Point_1 [1]))

315

316 ROI.cd_m2 = np.ones((Point_2 [0] - Point_1 [0]) * (

317 Point_2 [1] - Point_1 [1]))

318

319 for i in range (Point_1 [1], Point_2 [1]):

320

321 for j in range (Point_1 [0], Point_2 [0]):

322

323 d = d + 1 # just a variable to increase the array

324 ROI.data[d] = ROI_Input.data[i*number_of_pixel_x+j-1]

325 ROI.cd_m2 [d] = ROI_Input.cd_m2[i*number_of_pixel_x+j-1]

326

327

328 ROI.data = ROI.data.astype(int)

329 x = Point_2 [1]- Point_1 [1]

330 image2 = Image_processing.Array_to_image (ROI.data , (

331 Point_2 [0] - Point_1 [0]),x)

332

333

334 image2.convert(’L’)

335

336 image2.show()

337 if Input_Sensor == 0:

338 Input_Sensor = Sensor.C_Sensor(

339 10, number_of_pixel_x = number_of_pixel_x ,

340 number_of_pixel_y = number_of_pixel_y)

341 if Input_Sensor == 0:

342 CDPs , Contrast_ROI = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

343 ROI.cd_m2 ,

344 Contrast ,

345 Input_Sensor = Input_Sensor)

346 else:

73

347 CDPs , Contrast_ROI = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

348 ROI.cd_m2 ,

349 Contrast ,

350 number_of_pixel_x =

351 number_of_pixel_x ,

352 number_of_pixel_y =

353 number_of_pixel_y)

354

355 return CDPs , Contrast_ROI

356

357 ###

358 def evaluation_CDP_imaging_chain (Contrast_to_Evaluate , Input_Scene ,

359 Input_Sensor = 0, number_of_pixel_x = 0,

360 number_of_pixel_y = 0, Input_Windscreen = 0,

361 Input_Optics = 0, Input_Imager = 0,

362 Input_HDR = 0, Input_Tonemap = 0):

363 ’’’

364 Contrast_to_evaluate: Float or Integer. The contrast where the CDP

365 has to be evaluated.

366 Input_Sensor: Data from class sensor where number_of_pixel_x and

367 number_of_pixel_y be filled with integer

368 Input_Scene: Array -Like. The data has to be in Cd/m^2. Is necessary for

369 the calculation.

370 Input_Windscreen: Array -Like. The data has to be in Cd/m^2. Is not

371 necessary for the calculation.

372 Input_optics: Array -Like. The data has to be in Cd/m^2. Is not

373 necessary for the calculation.

374 Input_Imager: Array -Like. The data has to be in Cd/m^2. Is not

375 necessary for the calculation.

376 Input_HDR: Array -Like. The data has to be in Cd/m^2. Is not

377 necessary for the calculation.

378 Input_Tonemap: Array -Like. The data has to be in Cd/m^2. Is not

379 necessary for the calculation.

380

381 At the end there will be a plot with the CDP over the defined Imaging

382 Chain

383 ’’’

384 if Input_Sensor == 0:

385 if number_of_pixel_x == 0:

386 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

74

387 else:

388 Input_Sensor.number_of_pixel_x = number_of_pixel_x

389 if number_of_pixel_y == 0:

390 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

391 else:

392 Input_Sensor.number_of_pixel_y = number_of_pixel_y

393 else:

394 if Input_Sensor.number_of_pixel_x == 0:

395 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

396 if Input_Sensor.number_of_pixel_y == 0:

397 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

398

399

400

401 i = 0

402 Contrast_image = Data.C_IOData ()

403 if Input_Scene.any != 0:

404 CDP_Scene , Contrast_image.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

405 Input_Scene , Contrast_to_Evaluate , Input_Sensor)

406 y = np.array(CDP_Scene)

407 x = np.array(’Scene ’)

408 z = np.array(i)

409

410 if Input_Windscreen.any != 0:

411 CDP_Windscreen , Contrast_image.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

412 Input_Windscreen , Contrast_to_Evaluate , Input_Sensor)

413 y = np.append (y, CDP_Windscreen)

414 x = np.append (x, ’after Windscreen ’)

415 i = i+1

416 z = np.append (z, i)

417

418 if Input_Optics.any != 0:

419 CDP_Optics , Contrast_image.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

420 Input_Optics , Contrast_to_Evaluate , Input_Sensor)

421 y = np.append (y, CDP_Optics)

422 x = np.append (x, ’after Optics ’)

423 i = i+1

424 z = np.append (z, i)

425

426 if Input_Imager.any != 0:

75

427 CDP_Imager , Contrast_image.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

428 Input_Imager , Contrast_to_Evaluate , Input_Sensor)

429 y = np.append (y, CDP_Imager)

430 x = np.append (x, ’after Imager ’)

431 i = i+1

432 z = np.append (z, i)

433

434 if Input_HDR.any != 0:

435 CDP_HDR , Contrast_image.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

436 Input_HDR , Contrast_to_Evaluate , Input_Sensor)

437 y = np.append (y, CDP_HDR)

438 x = np.append (x, ’after HDR’)

439 i = i+1

440 z = np.append (z, i)

441

442 if Input_Tonemap.any != 0:

443 CDP_tonemap , Contrast_image.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel(

444 Input_Tonemap , Contrast_to_Evaluate , Input_Sensor)

445 y = np.append (y, CDP_tonemap)

446 x = np.append (x, ’after tonemap ’)

447 i = i+1

448 z = np.append (z, i)

449

450

451

452 Figure , Axes = plt.subplots (1,1, figsize =(10 ,5))

453 Axes.plot(z,y)

454 Axes.set_xticklabels (x, rotation =’vertical ’)

455 Axes.set_ylabel (’CDP’)

456 Axes.set_ylim (0 ,1.1)

457 Axes.set_xlim (0, np.max(z))

458

459 return

460

461 ###

462 def evaluation_SNR_imaging_chain (Input_Scene , Input_Windscreen = 0,

463 Input_Optics = 0, Input_Imager = 0,

464 Input_HDR = 0,

465 Input_Tonemap = 0, Zero_Signal_Value = 0):

466

76

467 ’’’

468 Input_Scene: Array -Like. The Data has to be in Cd/m^2. This Data is

469 necessary.

470 Input_Windscreen: Array -Like. The Data has to be in Cd/m^2. Is not

471 necessary for the calculation.

472 Input_optics: Array -Like. The Data has to be in Cd/m^2. Is not

473 necessary for the calculation.

474 Input_Imager: Array -Like. The Data has to be in Cd/m^2. Is not

475 necessary for the calculation.

476 Input_HDR: Array -Like. The Data has to be in Cd/m^2. Is not

477 necessary for the calculation.

478 Input_Tonemap: Array -Like. The Data has to be in Cd/m^2. Is not

479 necessary for the calculation.

480

481 At the end there will be a plot with the SNR over the defined Imaging

482 Chain

483 ’’’

484 i = 0

485 if Input_Scene.any != 0:

486 SNR_Scene = C_Image_quality.evaluate_SNR_Array (Input_Scene ,

487 Zero_Signal_Value)

488 y = np.array(SNR_Scene)

489 x = np.array(’Scene ’)

490 z = np.array(i)

491

492 if Input_Windscreen.any != 0:

493 SNR_Windscreen= C_Image_quality.evaluate_SNR_Array (Input_Windscreen ,

494 Zero_Signal_Value)

495 y = np.append (y, SNR_Windscreen)

496 x = np.append (x, ’after Windscreen ’)

497 i = i+1

498 z = np.append (z, i)

499

500 if Input_Optics.any != 0:

501 SNR_Optics = C_Image_quality.evaluate_SNR_Array(Input_Optics ,

502 Zero_Signal_Value)

503 y = np.append (y, SNR_Optics)

504 x = np.append (x, ’after Optics ’)

505 i = i+1

506 z = np.append (z, i)

77

507

508 if Input_Imager.any != 0:

509 SNR_Imager = C_Image_quality.evaluate_SNR_Array (Input_Imager ,

510 Zero_Signal_Value)

511 y = np.append (y, SNR_Imager)

512 x = np.append (x, ’after Imager ’)

513 i = i+1

514 z = np.append (z, i)

515

516 if Input_HDR.any != 0:

517 SNR_HDR = C_Image_quality.evaluate_SNR_Array (Input_HDR ,

518 Zero_Signal_Value)

519 y = np.append (y, SNR_HDR)

520 x = np.append (x, ’after HDR’)

521 i = i+1

522 z = np.append (z, i)

523

524 if Input_Tonemap.any != 0:

525 SNR_Tonemap = C_Image_quality.evaluate_SNR_Array (Input_Tonemap ,

526 Zero_Signal_Value)

527 y = np.append (y, SNR_Tonemap)

528 x = np.append (x, ’after tonemap ’)

529 i = i+1

530 z = np.append (z, i)

531

532

533

534 Figure , Axes = plt.subplots (1,1, figsize =(10 ,5))

535 Axes.plot(z,y)

536 Axes.set_xticklabels (x, rotation =’vertical ’)

537 Axes.set_ylabel (’SNR’)

538 Axes.set_xlim (0, np.max(z))

539

540 return

541

542 ###

543 def evaluation_from_x_to_y (Input , Start = 10, Stop = 100, Stepsize = 10,

544 Input_Sensor = 0, number_of_pixel_x = 0,

545 number_of_pixel_y = 0):

546 ’’’

78

547 Input: Array -Like. The data has to be in cd/m^2 Domain.

548 Start: Integer. Start contrast for the evaluation.

549 Stop: Integer. Stop contrast for the evaluation.

550 Stepsize: Integer. Difference between two contrasts.

551 Input_Sensor: Data from class Sensor where number_of_pixel_x and

552 number_of_pixel_y be filled with integer if not filled

553 the variable number_of_pixel_x and number_pixel_y have

554 to have integers inside

555 number_of_pixel_x: Integer is necessary otherwise Input_Sensor must be

556 existing

557 number_of_pixel_y: Integer is necessary otherwise Input_Sensor must be

558 existing

559

560 returns:

561 CDP_out: Array -Like with the different CDPs from Start to Stop with

562 the defined stepsize

563 Contrasts: Array -Like with the evaluated Contrasts in the defined

564 Domain

565 ’’’

566 if Input_Sensor == 0:

567 if number_of_pixel_x == 0:

568 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

569 if number_of_pixel_y == 0:

570 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

571 else:

572 if Input_Sensor.number_of_pixel_x == 0:

573 raise NameError ("At least number_of_pixel_y or a Input_Sensor is necessary")

574 if Input_Sensor.number_of_pixel_y == 0:

575 raise NameError ("At least number_of_pixel_x or a Input_Sensor is necessary")

576

577 #calculation of number of steps which are necessary

578 Helping_Value = int((Stop - Start) / Stepsize +1)

579 for j in range (0, Helping_Value):

580

581 if Input_Sensor == 0:

582

583 Contrast = Data.C_IOData ()

584 CDP , Contrast.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel (

585 Input , Start + Stepsize * j,

586 number_of_pixel_x = number_of_pixel_x ,

79

587 number_of_pixel_y = number_of_pixel_y)

588

589 if j == 0:

590 CDP_out = np.array(CDP)

591 Contrasts = np.array(Start)

592 else:

593 CDP_out = np.append(CDP_out , CDP)

594 Contrasts = np.append(Contrasts , Start + Stepsize * j)

595 else:

596 Contrast = Data.C_IOData ()

597 CDP , Contrast.data = C_Image_quality.evaluate_CDP_Pixel_to_Pixel (

598 Input , Start + Stepsize*j, Input_Sensor = Input_Sensor)

599 if j == 0:

600 CDP_out = np.array(CDP)

601 Contrasts = np.array(Start)

602 else:

603 CDP_out = np.append(CDP_out , CDP)

604 Contrasts = np.append(Contrasts , Start + Stepsize * j)

605

606

607 return CDP_out , Contrasts

608

609 ###

610 def write_to_xls (Contrasts , CDPs , name_of_sheet = "test"):

611 ’’’

612 Contrasts: Array -Like. The evaluated contrasts which have to be written

613 in the xls sheet.

614 CDPs: Array -Like. The associated CDPs to the evaluated contrasts.

615

616 Name_of_sheet: String. Name of sheet where the results have to be

617 written.

618

619 returns:

620 After this function there will be an xls with the name of sheet in

621 the folder

622

623 ’’’

624 os.chdir("XLS results")

625 Book = xlwt.Workbook(encoding = "utf -8")

626 Sheet1 = Book.add_sheet("Sheet 1")

80

627 Sheet1.write(0, 0, "Contrasts in %")

628

629 Number_of_Images = len (CDPs)

630 Number_of_Contrasts = len(Contrasts)

631

632 for i in range (0, Number_of_Contrasts):

633

634 Helping_Value = float(Contrasts[i])

635 Sheet1.write(i+1, 0, Helping_Value)

636

637 for j in range (0, Number_of_Images):

638 Sheet1.write (0, (j+1), "Picture number %s" %(j+1))

639

640 for i in range (0, Number_of_Contrasts):

641 Helping_Value = float(CDPs[j][i])

642 Sheet1.write (i+1, j+1, Helping_Value)

643

644 Book.save ("%s.xls" %name_of_sheet)

645 os.chdir("...")

646 return

Appendix 10: Image_processing

1 # -*- coding: utf -8 -*-

2 """

3 Created on Tue Jun 19 12:55:38 2018

4

5 @author: lueb5102

6 """

7 import numpy as np

8 import functions.C_IOData as Data

9 from PIL import Image

10 import os

11 import pylab as pl

12 import sys

13 import matplotlib.pyplot as plt

14 import matplotlib.path as mplPath

15 import plotly.plotly as py

16 import plotly.graph_objs as go

17 import plotly

18 import random

81

19

20

21 def DN_to_cd_m2conversion (Image_Information):

22 ’’’

23 Is the Backtransformation from digital numbers back into the cd/m^2 domain.

24 There are some brackets which are not necessary. Their only sense is to get all

25 relevant code onto one A4 Page.

26 Image_Information: Data from type C_IOData. There is all informationen about

27 the used camera inside. With these parameters the

28 backtransformation will be done. Not all Paremeters are

29 necessary but this will led to inaccurate results.

30 returns:

31 Image_Information: It is the same variable from the Input. But now als

32 the cd_m^2 function and the cd_m2 part of the variable

33 has got some results. These Results are calculated

34 inside this function

35

36 ’’’

37

38 c = 299792458 # in m/s

39 h = 6.62607004e-34

40 wavelength_m = 500e-9

41 luminos_efficiency = 1000

42 Conv_Fac = h * c * luminos_efficiency / wavelength_m

43 reference_temp = 25.

44 doubling_temp = 10

45

46 #go back to Sensor

47 Image_Information.cd_m2 = np.ones_like(Image_Information.data)

48 Conv_Light = Image_Information.sensorsize ** 2 * (

49 Image_Information.Exposure_Times [0] *

50 Image_Information.quatum_efficieny / Image_Information.K)

51 Image_Information.cd_m2_function = lambda x: x* Conv_Light / Conv_Fac

52 Image_Information.datatype_str = "DN (Digital Number)"

53 Image_Information.info_str = "This is the data of the Image"

54

55 for i in range (0, np.size(Image_Information.cd_m2)):

56

57 Image_Information.cd_m2 [i] = (Image_Information.data[i] * Conv_Light -

58 (Image_Information.mu_dark * 2 **((

82

59 Image_Information.temp - reference_temp)/ doubling_temp) *

60 Image_Information.Exposure_Times [0]))

61

62 for j in range (0, np.size(Image_Information.cd_m2)):

63

64 Image_Information.cd_m2[j]= Image_Information.cd_m2[j] / Conv_Fac

65

66 #go back to optics

67 if (Image_Information.transmission_Optics != 0):

68

69 Image_Information.cd_m2 = (Image_Information.cd_m2 /

70 Image_Information.transmission_Optics)

71 Image_Information.cd_m2_function = (lambda x: x * Conv_Light /

72 Conv_Fac / Image_Information.transmission_Optics)

73

74 if (Image_Information.F_number != 0):

75 #same formula like class optics

76 Conv_Optic = np.pi * 1 / (4 * Image_Information.F_number ** 2)

77 Image_Information.cd_m2 = Image_Information.cd_m2 * Conv_Optic

78 Image_Information.cd_m2_function = (lambda x: x * Conv_Light /

79 Conv_Fac / Image_Information.transmission_Optics * Conv_Optic)

80

81 #go back to windscreen

82 if (Image_Information.transmission_Windscreen != 0):

83

84 Image_Information.cd_m2 = (Image_Information.cd_m2 /

85 Image_Information.transmission_Windscreen)

86 Image_Information.cd_m2_function = (lambda x: x* Conv_Light / Conv_Fac

87 / Image_Information.transmission_Optics *

88 Conv_Optic /

89 Image_Information.transmission_Windscreen *(

90 1-Image_Information.glare_photons))

91

92 return Image_Information

93

94 ###

95 def Image_to_Array (Name_of_Image):

96 ’’’

97 This function converts an input image to an array.

98

83

99 Name_of_Image: String. Just the name of the image the rest will be done

100 inside this function. Image has to be stored in the CDP

101 folder.

102

103 returns:

104 Array: Array. With the Data from the image.

105 Number_of_pixel_x: Integer. Number of Pixel in the x-Axis.

106 Number_of_pixel_y: Integer. Number of Pixel in the y-Axis.

107

108 ’’’

109

110 os.chdir("Images to evaluate")

111 Input_Image = Image.open("%s" %Name_of_Image)

112 Input_Image.show()

113

114 if Input_Image.mode != "L":

115 Input_Image = Input_Image.convert("L")

116

117 number_of_pixel_x , number_of_pixel_y = Input_Image.size

118

119 Array = np.ones ((number_of_pixel_x)*(number_of_pixel_y))

120

121 for i in range (0, number_of_pixel_y):

122 for j in range (0, number_of_pixel_x):

123 Array[number_of_pixel_x * i + j] = Input_Image.getpixel ((j,i))

124 os.chdir("..")

125 return Array , number_of_pixel_x , number_of_pixel_y

126

127

128

129 ###

130 def Array_to_image (Array , number_of_pixel_x , number_of_pixel_y):

131 ’’’

132 This function converts an Input array to an Image.

133

134 Array: Array. With the Data for the image.

135 Number_of_pixel_x: Integer. Number of pixel in the x-axis.

136 Number_of_pixel_y: Integer. Number of pixel in the y-axis.

137

138 returns:

84

139 image: Data type from class PIL Image.

140

141 ’’’

142

143 Array.astype(int)

144 image = Image.new (’RGB’, (number_of_pixel_x , number_of_pixel_y), (210))

145

146 #image after the ISP

147 for i in range (0, number_of_pixel_y):

148 for j in range (0, number_of_pixel_x):

149

150 image.putpixel ((j,i), (Array[i*number_of_pixel_x+j],Array[

151 i*number_of_pixel_x+j]

152 ,Array[i*number_of_pixel_x+j]))

153 image = image.convert("L")

154 return image

155

156 ###

157 def plot3D (Image_Data , Input_Sensor = 0, number_of_pixel_x = 0,

158 number_of_pixel_y = 0):

159 ’’’

160 Plots the image as a 3D plot

161 Image_Data: Array -Like. With the data of each pixel of the image

162 Input_Sensor: Data from Class Sensor where number_of_pixel_x and

163 number_of_pixel_y be filled with integer if not filled

164 the variable number_of_pixel_x and number_pixel_y have

165 to have integers inside

166 number_of_pixel_x: Integer is necessary otherwise Input_Sensor must be

167 existing

168 number_of_pixel_y: Integer is necessary otherwise Input_Sensor must be

169 existing

170

171 returns:

172 A 3d-plot with the data (z-Axis), pixel in x(X-Axis) and pixel in

173 y (y-Axis) will be generated.

174

175 ’’’

176

177

178 y_Achse = np.ones(number_of_pixel_y * number_of_pixel_x)

85

179 d_Achse = np.ones((number_of_pixel_y , number_of_pixel_x))

180

181

182 if Input_Sensor == 0:

183 for i in range (0, number_of_pixel_y):

184 for j in range (0, number_of_pixel_x):

185 y_Achse [(j + i * number_of_pixel_y)] = j

186 d_Achse[i][j] = Image_Data[i*number_of_pixel_x+j]

187

188

189

190

191

192

193 plotly.offline.plot({"data": [go.Surface(z=d_Achse)]})

194 return

195

196 ###

197 def draw_ROI (name_of_image):

198 """ This function opens the given Image and converts it to an grey scale

199 image afterwards it gives an interface to draw two different ROIs into the

200 image.

201 input:

202 name_of_image: The name of the image where the ROIs should be drawn.

203

204 returns:

205 ROI1: First defined ROI. Array_Like with the image data.

206 ROI1: First defined ROI. Array_Like with the image data.

207 """

208

209 # create image

210 os.chdir("Images to evaluate")

211 convert = Image.open(’%s’ %name_of_image). convert(’L’)

212 convert.save (’%s_grey.JPG’ %name_of_image)

213 img = pl.imread(’%s_grey.JPG’%name_of_image)

214

215

216 # show the image

217 pl.imshow(img , interpolation=’nearest ’, cmap="gist_gray")

218 pl.colorbar ()

86

219 pl.title("left click: line segment right click: close region")

220

221 # let user draw first ROI

222 ROI1 = roipoly(roicolor=’r’)

223

224 # show the image with the first ROI

225 pl.imshow(img , interpolation=’nearest ’, cmap="gist_gray")

226 pl.colorbar ()

227 ROI1.displayROI ()

228 pl.title(’draw second ROI’)

229

230 # let user draw second ROI

231 ROI2 = roipoly(roicolor=’b’)

232

233 # show the image with both ROIs and their mean values

234 pl.imshow(img , interpolation=’nearest ’, cmap="gist_gray")

235 pl.colorbar ()

236 [x.displayROI () for x in [ROI1 , ROI2]]

237 pl.title(’The two ROIs’)

238 pl.show()

239

240 ROI1 = np.extract(ROI1.getMask(img),img)

241 ROI2 = np.extract(ROI2.getMask(img),img)

242 os.chdir("..")

243 return ROI1 , ROI2

244

245 """

246 Copied from https :// github.com/jdoepfert/roipoly.py.

247 """

248

249 class roipoly:

250

251 def __init__(self , fig=[], ax=[], roicolor=’b’):

252 if fig == []:

253 fig = plt.gcf()

254

255 if ax == []:

256 ax = plt.gca()

257

258 self.previous_point = []

87

259 self.allxpoints = []

260 self.allypoints = []

261 self.start_point = []

262 self.end_point = []

263 self.line = None

264 self.roicolor = roicolor

265 self.fig = fig

266 self.ax = ax

267 #self.fig.canvas.draw()

268

269 self.__ID1 = self.fig.canvas.mpl_connect(

270 ’motion_notify_event ’, self.__motion_notify_callback)

271 self.__ID2 = self.fig.canvas.mpl_connect(

272 ’button_press_event ’, self.__button_press_callback)

273

274 if sys.flags.interactive:

275 plt.show(block=False)

276 else:

277 plt.show()

278

279 def getMask(self , currentImage):

280 ny , nx = np.shape(currentImage)

281 poly_verts = [(self.allxpoints [0], self.allypoints [0])]

282 for i in range(len(self.allxpoints)-1, -1, -1):

283 poly_verts.append ((self.allxpoints[i], self.allypoints[i]))

284

285 # Create vertex coordinates for each grid cell ...

286 # (<0,0> is at the top left of the grid in this system)

287 x, y = np.meshgrid(np.arange(nx), np.arange(ny))

288 x, y = x.flatten(), y.flatten ()

289 points = np.vstack ((x,y)).T

290

291 ROIpath = mplPath.Path(poly_verts)

292 grid = ROIpath.contains_points(points). reshape ((ny ,nx))

293 return grid

294

295 def displayROI(self ,** linekwargs):

296 l = plt.Line2D(self.allxpoints +

297 [self.allxpoints [0]],

298 self.allypoints +

88

299 [self.allypoints [0]],

300 color=self.roicolor , ** linekwargs)

301 ax = plt.gca()

302 ax.add_line(l)

303 plt.draw()

304

305 def displayMean(self ,currentImage , ** textkwargs):

306 mask = self.getMask(currentImage)

307 meanval = np.mean(np.extract(mask , currentImage))

308 stdval = np.std(np.extract(mask , currentImage))

309

310 string = "%.3f +- %.3f" % (meanval , stdval)

311 plt.text(self.allxpoints [0], self.allypoints [0],

312 string , color=self.roicolor ,

313 bbox=dict(facecolor=’w’, alpha =0.6), ** textkwargs)

314

315 def __motion_notify_callback(self , event):

316

317 if event.inaxes:

318 ax = event.inaxes

319 x, y = event.xdata , event.ydata

320 # Move line around

321 if (event.button == None or event.button == 1) and self.line != None:

322 self.line.set_data ([self.previous_point [0], x],

323 [self.previous_point [1], y])

324 self.fig.canvas.draw()

325

326

327 def __button_press_callback(self , event):

328

329 if event.inaxes:

330

331 x, y = event.xdata , event.ydata

332 ax = event.inaxes

333 # If you press the left button , single click

334 if event.button == 1 and event.dblclick == False:

335 if self.line == None: # if there is no line , create a line

336 self.line = plt.Line2D ([x, x],

337 [y, y],

338 marker=’o’,

89

339 color=self.roicolor)

340 self.start_point = [x,y]

341 self.previous_point = self.start_point

342 self.allxpoints =[x]

343 self.allypoints =[y]

344

345 ax.add_line(self.line)

346 self.fig.canvas.draw()

347 # add a segment

348 else: # if there is a line , create a segment

349 self.line = plt.Line2D ([self.previous_point [0], x],

350 [self.previous_point [1], y],

351 marker = ’o’,color=self.roicolor)

352 self.previous_point = [x,y]

353 self.allxpoints.append(x)

354 self.allypoints.append(y)

355

356 event.inaxes.add_line(self.line)

357 self.fig.canvas.draw()

358 # close the loop and disconnect

359 elif ((event.button == 1 and event.dblclick ==True) or

360 (event.button == 3 and event.dblclick ==False)) and self.line != None:

361 self.fig.canvas.mpl_disconnect(self.__ID1) #joerg

362 self.fig.canvas.mpl_disconnect(self.__ID2) #joerg

363

364 self.line.set_data ([self.previous_point [0],

365 self.start_point [0]],

366 [self.previous_point [1],

367 self.start_point [1]])

368 ax.add_line(self.line)

369 self.fig.canvas.draw()

370 self.line = None

371

372 if sys.flags.interactive:

373 pass

374 else:

375 #figure has to be closed so that code can continue

376 plt.close(self.fig)

Appendix 11: Video_processing

90

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed Jun 13 13:25:38 2018

4

5 @author: lueb5102

6 """

7

8

9 import cv2

10 from PIL import Image

11 import numpy as np

12 import functions.C_Image_quality as Image_Quality

13 import functions.Image_processing as Image_processing

14 import os

15

16 def Video_CDP_evaluation_from_x_to_y (

17 Name_Scene , Image_Information , Start = 10, Stop = 30, Stepsize = 10,

18 Input_Sensor = 0, Name_of_sheet = "results"):

19 ’’’

20 Name_Scene: String with the name of the video

21 Image_Information: Data from type C_IOData

22 Start: Integer

23 Stop: Integer

24 Stepsize: Integer

25 Input_Sensor: Data from class sensor where number_of_pixel_x and

26 number_of_pixel_y be filled with integer if not filled

27 the variable number_of_pixel_x and number_pixel_y have

28 to have integers inside

29 number_of_pixel_x: Integer is necessary otherwise Input_Sensor must be

30 existing

31 number_of_pixel_y: Integer is necessary otherwise Input_Sensor must be

32 existing

33 Name_of_sheet: String. Under this name the results of the CDP -evaluation

34 will be stored in a xls -sheet.

35

36 ’’’

37 os.chdir("Videos to evaluate")

38

39

40

91

41 Vidcap = cv2.VideoCapture("%s" %Name_Scene)

42 Success , Frame = Vidcap.read()

43 Count = 0

44 Success = True

45 os.makedirs ("..\\ Videos to evaluate \\%s frames" %Name_Scene)

46 os.chdir("%s frames" %Name_Scene)

47 ’Fragment the Video into single frames ’

48 while Success:

49

50 Success , Frame = Vidcap.read()

51

52 if Success == True:

53

54 X_Size , Y_Size = Frame.shape [:2]

55 img = Image.new("RGB",(X_Size , Y_Size), 210)

56

57 for i in range (0, X_Size):

58 for j in range (0, Y_Size):

59 img.putpixel ((i,j),(Frame[i][j][2], Frame[i][j][1],

60 Frame[i][j][0]))

61

62 img = img.convert("L")

63

64 img.save("frame_%d.png" %Count) #save as JPEG

65 print(’Read a new frame: %d ’ %Count , Success)

66 Count = Count + 1

67

68

69 ’Create an array to write each CDP in the array ’

70 CDP_frames = np.zeros ((Count -1, (int((Stop -Start)/ Stepsize +1))))

71

72 ’In this for Loop each Image will be opened and the CDP will be calculated ’

73 for i in range (0, Count -1):

74

75 ’Open the produced single Frame’

76 img = Image.open("frame_%d.png" %i)

77 number_of_pixel_x , number_of_pixel_y = img.size

78 Image_Information.data = np.zeros(number_of_pixel_x * number_of_pixel_y)

79

80 ’Write the Information of the Image to an Array ’

92

81 for j in range (0, number_of_pixel_x):

82 for k in range (0, number_of_pixel_y):

83 Image_Information.data[number_of_pixel_y * j + k] = img.getpixel ((j,k))

84

85 ’Convert the Single frame back to real world illumniance ’

86 Image_Information = Image_processing.DN_to_cd_m2conversion (

87 Image_Information)

88

89 ’ Evaluate the Contrast from start to stop of the frame ’

90 CDP_frame , Evaluated_Contrasts = Image_Quality.C_Image_quality.evaluation_from_x_to_y (

91 Image_Information.cd_m2 , Start , Stop , Stepsize ,

92 number_of_pixel_x = number_of_pixel_x ,

93 number_of_pixel_y = number_of_pixel_y)

94

95 ’Write the results from above into the array ’

96 for j in range (0, len (Evaluated_Contrasts)):

97 CDP_frames [i][j] = CDP_frame[j]

98 os.chdir("..")

99 os.chdir("..")

100 ’Write the results from above into an xls -Sheet’

101 Image_Quality.C_Image_quality.write_to_xls(Evaluated_Contrasts , CDP_frames ,

102 name_of_sheet = Name_of_sheet)

103

104 return

93

Bibliography

[1] Christian Bloch. Das HDRI-Handbuch: High Dynamic Range Imaging für Fo-
tografen und Computergrafiker. 1. Auflage. Heidelberg: dpunkt.-Verl., 2008. isbn:
9783898644303. url: http://deposit.d- nb.de/cgi- bin/dokserv?id=
2964553&prov=M&dok_var=1&dok_ext=htm.

[2] Der Weg des ABS vom Flugzeug ins Auto. 19.03.2010. url: https://www.auto-
motor-und-sport.de/test/abs-die-geschichte-des-anti-blockier-

systems/?block=1&private=1 (visited on 08/07/2018).

[3] EMVA. Standard for Characterization of Image Sensors and Cameras. 30.12.2016.
(Visited on 08/07/2018).

[4] Marc Geese, Ulrich Seeger, and Alfredo Paolillo. Detection Probabilities: Per-
formance Prediction for Sensors of Autonomous Vehicles.

[5] Bernd Jähne. Digitale Bildverarbeitung: Und Bildgewinnung. 7., neu bearbeitete
Aufl. 2012. 2012. isbn: 9783642049521. url: http://dx.doi.org/10.1007/
978-3-642-04952-1.

[6] Marc Geese. Image quality and safety in automotive video applications - YouTube.
url: https://www.youtube.com/watch?v=luiewsmZcrg (visited on 08/12/2018).

[7] Members of the IEEE P2020 Working Group. IEEE P2020 Automotive Imaging
White Paper. IEEE, 2018.

[8] Hans-Christian Pape et al., eds. Physiologie. 7., vollst. überarb. und erw. Aufl.
s.l.: Georg Thieme Verlag KG, 2014. isbn: 9783137960072. doi: 10.1055/b-
002-98019. url: http://dx.doi.org/10.1055/b-002-98019.

[9] R. Stead et al. IEEE - SA P2020: Face-to-Face Meeting. 2017. url: https:
//auto- sens.com/wp- content/uploads/2016/06/20170209_IEEE- SA_

P2020_BoschMeeting_FINAL.pdf (visited on 07/31/2018).

[10] Ulrich Seeger. Challenges with video camera image quality in functional safety
for autonomous driving - YouTube. url: https://www.youtube.com/watch?
v=BbK4kywyquE (visited on 08/12/2018).

http://deposit.d-nb.de/cgi-bin/dokserv?id=2964553&prov=M&dok_var=1&dok_ext=htm
http://deposit.d-nb.de/cgi-bin/dokserv?id=2964553&prov=M&dok_var=1&dok_ext=htm
https://www.auto-motor-und-sport.de/test/abs-die-geschichte-des-anti-blockier-systems/?block=1&private=1
https://www.auto-motor-und-sport.de/test/abs-die-geschichte-des-anti-blockier-systems/?block=1&private=1
https://www.auto-motor-und-sport.de/test/abs-die-geschichte-des-anti-blockier-systems/?block=1&private=1
http://dx.doi.org/10.1007/978-3-642-04952-1
http://dx.doi.org/10.1007/978-3-642-04952-1
https://www.youtube.com/watch?v=luiewsmZcrg
https://doi.org/10.1055/b-002-98019
https://doi.org/10.1055/b-002-98019
http://dx.doi.org/10.1055/b-002-98019
https://auto-sens.com/wp-content/uploads/2016/06/20170209_IEEE-SA_P2020_BoschMeeting_FINAL.pdf
https://auto-sens.com/wp-content/uploads/2016/06/20170209_IEEE-SA_P2020_BoschMeeting_FINAL.pdf
https://auto-sens.com/wp-content/uploads/2016/06/20170209_IEEE-SA_P2020_BoschMeeting_FINAL.pdf
https://www.youtube.com/watch?v=BbK4kywyquE
https://www.youtube.com/watch?v=BbK4kywyquE

	Eidesstattliche Versicherung
	Acronyms
	Introduction
	Image quality metrics
	Imaging chain of a camera system
	Project P2020 at the Institute of Electrical and Electronics Engineers
	Contrast detection probability

	Implementing CDP
	Structure of the program
	Functions of the program
	CDP simulation
	CDP evaluation with Images
	Video CDP evaluation

	Application and limits of CDP
	CDP simulation with different parameters
	Summary
	Code export from Python
	Bibliography

