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The market for cameras that produce images for Machine vision (MV) and
Artificial Intelligence (Al), in contrast to pictorial images for human vision, is
steadily growing. Applications include automotive (driver assistance and
autonomous vehicles), robotics, security, and medical imaging systems.

Two questions arise when designing camera systems for such applications.

1. How best to select (or qualify) cameras for MV/AIl applications?
2. What image processing (ISP or filtering) is optimal?

To answer these questions, we must go beyond standard measurements of
sharpness (MTF) and noise and apply metrics derived from information

theory, including information capacity and related metrics for object and edge

detection.

These metrics are important because Object Recognition (OR), MV, and Al
algorithms operate on information, not pixels, making them far better
predictors of system performance than MTF or noise.

Imatest has developed a highly convenient method for measuring information

capacity and related metrics from the most widely used ISO standard

resolution test pattern — the slanted edge. We describe how the new metrics
can be used to select (or qualify) cameras and determine the optimum Image

Signal Processing (ISP) for Object Recognition, which is likely to improve the
performance of MV and Al algorithms.
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A shorter, easier-to-read version of this white paper with fewer equations,
“Image Information Metrics in Imatest,” is linked from
www.imatest.com/solutions/image-information-metrics.

This document describes features of Imatest 24.1, which will be available in the
Imatest 24.1 Pilot program until it the spring 2024 release.
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Outline

This white paper begins with an Introduction, then it describes two mathematical approaches to
calculating information capacity and related metrics from the slanted edge: the edge variance method

and the noise image method.

We describe several information capacity-related metrics (measurements that combine sharpness and
noise). This leads to the key object and edge detection metrics, SNRi and Edge SNRi, that can be used to
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design a filter that significantly improves edge and object detection prior to sending the image to the
MV/AI algorithm.

We will not cover important metrics not directly related to information, including dynamic range and
susceptibility to stray light.

Finally, five appendices introduce information theory, describe how to filter images and obtain results
from Imatest, show how the key detection metrics correlate with information capacity, and explain
binning noise (obscure but important).

Introduction
Traditional image quality measurements are based on several image quality factors, including sharpness,
noise, dynamic range, optical distortion, tonal and color response, and spatial uniformity.

These measurements have proven useful for human vision, where tradeoffs are often required. For
example, sharpening makes fine features more visible to the human eye, but it increases noise. Choices
are often based on experience; they come down to what looks best, i.e., what has the most pleasing
appearance for the application.

Object Recognition (OR), Machine Vision (MV), and Artificial Intelligence (Al) systems are different.
System performance is not dependent on image appearance. A more objective metric is required.

Information

Information is a metric that quantifies how much is learned from a measurement. For example, an

individual pixel in a blurred image is highly correlated with its neighbors, so little is learned from its
contents. But if the image is sharp, it is weakly correlated, and much more can be learned from its

contents, i.e., it contains more information.

The concept of information dates from 1948 and 49 in two celebrated papers by Claude Shannon [1],[2].
Appendix | contains a brief introduction to information theory. Earlier work on measuring information
capacity from Siemens Star images [3] will only be briefly referenced in this document.

In electronic communications, information capacity is the maximum rate that information can be
transmitted through a channel without error. In images, it is the maximum amount of information that a
pixel or image can hold.

The slanted edge

The slanted edge, which is a key part of the ISO 12233 standard, “Photography —
Electronic still picture imaging — Resolution and spatial frequency responses” [4], is
the most convenient and widely used resolution test pattern. It is highly efficient in
its use of space (with multiple edges, sharpness can be mapped over the image
surface), and calculations are very fast.

Imatest offers several charts with multiple edges that can be automatically detected
and rapidly analyzed. Some of the charts offer additional color, tone, noise, and
distortion analysis.
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Information capacity can be calculated from an overlooked capability of slanted-edge regions that was
quite literally hidden in plain sight. To understand it, we start with a summary of the standard ISO
12233 Edge SFR (e-SFR) algorithm.

The image should be well-exposed, avoiding the dark “toe” and light “shoulder” regions.

1.

2. Linearize the image by applying the inverse of the
encoding gamma curve or using the edge itself if
the chart contrast is known.

3. Find the center of the transition between the
light and dark regions for each horizontal scan
line.

4. Fit a polynomial curve to the center locations.

5. Depending on the location of the curve on the
scan line, add each appropriately shifted scan line
to one of four bins.

6. Combine the mean signals in each bin to obtain
the 4x oversampled averaged edge for the scan
lines, s (%) = 7423 y1(x).

7. Modulation Transfer Function MTF(f) can be

calculated by differentiating the averaged edge,
windowing it, then taking the magnitude of the
Fourier transform, normalized to 1 (100%) at zero
frequency. MTF(f) is displayed in the lower plots
of the Edge/MTF figure. Example on the right.

The Edge Variance method

Edge profile (linear)

LX5_Star_SG__10.7mm_f4_IS0O100_s1-4_1010173.tiff
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The Edge Variance method uses an overlooked capability of the ISO 12233 binning algorithm to calculate

information capacity.

N . 1 — .
By summing the squares of each scan line, p;(x) = ZZ%=01 y%(x), we calculate the edge variance

(the spatially dependent noise power) os%(x) = N(x) and noise amplitude os(x) in addition to
the mean, us(x).

Edge variance o,2(x) and noise amplitude os(x) are calculated from ¥, y;(x) and ¥ y2(x).

L-1 2

1 —l-1 1Lt 1
V@ =@ =7) @ -w) = 1) 3@ -(1), n®) =p) -
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Signal and noise results 10° _ LXS Star.SG_10.7mm_t4_ISO100_s1-4 1010172.1

@

The 4x oversampled average edge, s(X), is shown in  Mean sgnal LR = Mean noise = 0.00499 |
the upper plot (in the green box, above). Information Mean edge noise LR = P eigimad s = 00t
capacities are shown with a yellow background.

Y
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The noise amplitude (voltage), os(x), is shown on the
right. The thick black line is the smoothed luminance
channel.

Edge noise V for Info Capacity

os(x) plot is a new measurement: spatially i

dependent noise was previously difficult to 40 5 0 5 0 15
Pixels (Hor)

observe.

Spatially dependent noise, calculated by the Edge

Calculating information capacity variance method

from us(x) and os(x)
The next step is to calculate the information capacity, C, typically in units of bits per pixel, by entering
appropriate values of the signal and noise power, S(f) and N(f), into the Shannon-Hartley equation.

C =J;Wlog2(1 +%)df

S(f) and N(f) are frequency-dependent signal and noise power, and W is the bandwidth, which is always
equal to 0.5 cycles/pixel (the Nyquist frequency). Frequency-dependence is entered into S(f) using
MTF(f) (described below).

This method, which is called the Edge Variance method, is the first of two methods for calculating
C. The second method, called the Noise Image method, may be slightly more accurate, but only
suitable for uniformly or minimally processed images; it should not be used for bilateral-filtered
images (mostly in-camera JPEGSs), to be described below.

Signal power S

The peak-to-peak signal amplitude at low spatial
frequencies is the measured difference between
the means of the light and dark regions of the
linearized slanted edge V(x) = us(x).

=]

084

v

mean —

(Vmax+ Vmin)/Z

8

Edge (linear, unnormalized)

Vp—p = Aug = Usrignt — Uspark = Vimax — Vmin

The signal power is the variance of this signal. For B Vimin

calculating C, we assume a uniform distribution 0 % 2 w0 10 2 »
between the limits V4, and Vy,in, Which —

maximizes information capacity, noting that the
variance of the uniform distribution , which is the average signal power at low spatial frequencies, is

0-13 = Savg(o) = (Vnax — Vmin)z/12 = sz—p/lz

Signal amplitude from slanted edge

The Shannon-Hartley equation uses the average frequency-dependent signal power, Savg(f).

Savg(F) = (p—p MTF (1)) /12
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Signal power S is proportional to the square of the chart contrast if the image has been properly
linearized. Smax < 1 for linearized images normalized to 1. (It may be less in systems that limit signal

levels.)

Noise power N

Noise power NN has the same units as signal power S; hence S/N is dimensionless.

In examining a great many images, we observe two broad classes of images with very different noise
properties, visible in as(x). We call them (1) uniformly/minimally processed and (2) bilateral filtered
images. The value of noise power, N, used to calculate C, is different for the two image types.

For “black box” cameras with unknown image processing, the table below shows how to distinguish the
two image types. If the image processing pipeline is known and understood, the table may not be
necessary. For most applications, uniformly/minimally processed images are preferred.

The two image types: Plots of os(X) (4% oversampled)

Bilateral-filtered image

Minimally (i.e., uniformly) processed image

Sharpened near the edge; usually noise-reduced
elsewhere. Nearly universal in consumer camera
JPEG images. Image processing appears to
increase information capacity C, even though
information is removed. For this reason, it is
important to use the peak noise 0s%(x) (as
described below) to calculate C.

Converted from raw with an external raw
converter, with no sharpening or noise reduction.

A strong 0s(X) peak is visible near the edge
transition. (This peak below is stronger than
usual.)

Little or no peak is visible in 0s(x). Noise increases
on the right because noise power is proportional
to signal power (the mean number of photons
striking each pixel) for linear sensors.

Strongly sharpened images can have a moderate
amplitude peak, probably because the binning
algorithm, which bins scan lines based on the
polynomial fit to the centers (but not the centers
themselves) is designed to optimize the MTF
calculation but not the edge noise.

For calculating C,
N is the peak noise power, smoothed with a
rectangular kernel of length PW20/2.

For calculating C,
N = mean(o2(x)) for all values of x in the ROI.

N. Koren
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LX5_Star_SG__10.7mm_f4_IS0100_s1-4_1010173.JPG LX5_Star_SG__10.7mm_f4_ISO100_s1-4_1010173.tiff
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For both images, the solid line is the smoothed noise amplitude, s(x)

Avoid for evaluating cameras for MV/AI systems. Recommended, if available.

Texture: is reduced in low contrast portions of the | Texture: relatively uniform; affected very little by

image. Bilateral filtering is the reason texture is image contrast. Charts such as Spilled Coins and
measured with charts such as Spilled Coins and Log F-Contrast should have MTF similar to the
Log F-Contrast: measurements can be very slanted-edge.

different from slanted edges.

Bilateral-filtered images are of interest because we often measure “black box” cameras, where we don’t
know whether bilateral filtering is present, but we want to obtain a reasonable estimate of C.

Uniformly/minimally processed images should be used for evaluating cameras for use in MV/Al systems,.

Binning noise is a type of quantization noise that affects the Line Spread Function, but has no effect on
standard MTF measurements. It is described in Appendix 5, below.

Bandwidth W

Bandwidth W is always 0.5 cycles/pixel (the Nyquist frequency). Signals above Nyquist do not contribute
to the information content; they can reduce it by causing aliasing — spurious low-frequency signals like
Moiré that can interfere with the true image. Frequency-dependence comes from MTF(f).

Combining Savy(f), N, and W to obtain C
Savg(f), N, and W are entered into the Shannon-Hartley equation.

0.5/Af
05 S Savg (i
c=j log2(1+%(f))dfz Z log2<1+#>m‘
0 i=0

MTF(f) can take a large bite out of C, especially since it is squared in the above equation. Because of its
frequency-dependence, it is sometimes confused with bandwidth.

Cis measured with relatively low contrast test charts to ensure that the camera is operating in its linear

. . . : Vinax—Vmi
region. For most of our work, we use charts with a 4:1 contrast ratio (Michelson contrast = 22~ 1% —

maxtVmin
0.6), following the 1ISO 12233 standard [4].
Since Vp.pis directly proportional to chart contrast, we label C according to the contrast ratio: C, for n:1
contrast ratio. We use Cy throughout this document.
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Measurements of C; from a variety of exposures make it clear that (a) C4 is highly dependent on the
exposure level, and (b) C4 does not represent the maximum information capacity of the camera.

Maximum information capacity Cmax — @ more consistent metric

C4is strongly dependent on exposure because (1) voltage range AV = V., is a strong function of
exposure, and (2) noise power N is also a function of exposure (derived from image sensor properties).

We have developed a metric for maximum information capacity: Cmax, that is nearly
independent of exposure. It is obtained in two steps, shown inside a “green for geeks” box below.

Calculating maximum information capacity, Cmax

Step1: Replace the measured peak-to-peak voltage range V)., with the maximum allowable value,
Vo—p_max = 1. This may seem like a simplification, but it works well for most cameras. Referring to the

section on Signal Power S,

Step 2: Replace the measured noise power N with Npean, the mean of N over the range 0 <V <1 (where
1 is the maximum allowable normalized signal voltage V). For linear (non-HDR) image sensors, the general
equation for noise power N as a function of V'is

ko is the coefficient for constant noise (dark current noise, Johnson (electronic) noise, etc.). k: is the
coefficient for photon shot noise. They are calculated from noise powers N; = 612 and Nz = 22, which are
measured along with signal voltages on the darker and lighter sides of the edge transition.

Assuming N, = ko + k{Vuin and N, = kg + k,V;,,4, where N; < N, for linear image sensors, we can
solve two equations in two unknowns for ko and k.

ko _ NIVmax - NZVmin : k1 _ N2 - Nl

Vmax - Vlmin Vmax - Vmin

N closely approximates the noise used in noise calculation method (1) (for minimally processed images
that don’t have bilateral filtering). But if method (2) (the smoothed peak noise) is used (recommended for
in-camera JPEGs with bilateral filtering), N is generally larger, and must be modified.

N - kyN, where ky = Nmethod,Z/Nmethod,l

In bilateral-filtered images (most JPEGs from consumer cameras), lowpass filtering (for noise reduction)
may be affect Nz and N: strongly enough so the equation N(V) = k, + k;V does not reliably hold. This can
adversely affect the accuracy of Cmox.
The mean noise power Nyeqn over the range 0 < V' < 1 for calculating Cax is
LN dv 1
mean — 1 . J (ko + klv)dv =k0 + k1/2
fo dv 0

To handle cases where noise is not lighter on the light side of the edge, which can happen with HDR image
sensors or with weird image processing, use

Nmean = maX(Nmeanf Nminr Nmax)

Using N = Npean, Vp—p max = 1 and Sg,4(f) = MTF(f)?/12,

0.5/Af
C fojl (1 + MTF(f)Z) df E 1 (1 + MTF(iAf)Z) Af
= 0 —_— = 0 = ————
e =y 0BT 12 N £y %8\ T 12 N
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Because noise in High Dynamic Range (HDR) sensors does not follow the simple equation for linear sensors,
we recommend giving the image sufficient exposure so the brighter side of the edge is near (but definitely
below) saturation, then, if the noise does not increase with exposure, use Nmean, as indicated above.

Chax is nearly independent of exposure for minimally or uniformly processed images with linear sensors,
where noise power N is a known function of signal voltage V.

Consistency of Cmax

We performed a set of analysis on two cameras with a range of exposures (indicated by Viean). The
results showed that Cnmax Was highly consistent with exposure for the raw—>TIFF images (which were not
bilateral-filtered), but less consistent with the bilateral-filtered (JPEG) images. C; varied as expected.
Because of the inconsistency, we don’t recommend using bilateral-filtered images where accurate
information capacity measurements are required— especially when cameras are being evaluated for use
in MV/AI systems.

Cs and Cpax for minimally processed raw->TIFF and JPEG images for two cameras
Camera 1 (10 MP) Shannon capacity C, & C . vs. Exposure Camera 4 (16 MP) Shannon capacity C, & C_ vs. Exposure

G from 4:1 Slanted-edges: raw-->TIFF & JPEG from 4:1 Slanted-edges: raw-->TIFF & JPEG

T ——T 4.5 —— —
A e,
s, s
5 4 o 1 = 4‘\ g ?
o o P -
g o
2 — g st *
] ]
UE DE 3F
oF o
o o' /.
2 2
E £
S ——C, raw->TIFF E 2r ——C, raw>TIFF ||
2
H e C, raW->TIFF H e = C,__ raw->TIFF
o wrwmnnn G, JPEG 1 ® q45f wwvmenns G 4 JPEG
wogp G JPEG «ogen G JPEG
: - ’ - -
10" 10° 107 10°
an (proportional to exposure) an (proportional to exposure)
10 MP compact camera 16 MP Micro Four-Thirds camera

Cnax may be need to be adjusted if the image is incapable of spanning the entire range of Digital
Numbers (DNs), for example, 0-255 for images with bit depth = 8. Information capacity measurements
fail if local tone mapping has been applied.

Total information capacity

Thus far, we have presented information capacity C in bits per pixel. The total information capacity,
Ciota, for the entire image takes variations in C over the image into account.

To obtain Croa for auto-detected slanted-edge modules, SFRplus, eSFR ISO, or Checkerboard, select 3D
& contour plots, then select Edge info Cap C_max (on the right of the Rescharts window, below). The

mean value of Cy,qx for the image will also be displayed. For the information capacity plots (C4 and Cmax),
the zone weights are always [1, 1, 1].

Ctotar = mean(C) X megapixels.
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3D plot of information Capacity Cnax over the image surface

The mean information capacity Cpax is 2.847 bits/pixel. Since the camera has 16 Megapixels, total
capacity ChmaxTori for the Luminance (Y) channel = 45.44 MB.

Signal averaging
Signal averaging is a well-known technique that can improve the accuracy and consistency for
measurements of noisy images for both the Edge Variance and Noise Image methods.

Extremely noisy images, typically acquired in dim light or at high Exposure Indices, may result in
inaccurate measurements of MTF and C. Signal averaging, where n identical captures of the same image
are averaged, is a classic technique for obtaining more consistent measurements by reducing the effect
of uncorrelated noise. When n images are averaged, the sum of the signal voltage and the sum of the
noise power (noise voltage?), which is uncorrelated, are both proportional to n. This causes noise
amplitude to be proportional to v, so that SNR increases by vn: by 3dB whenever n is doubled. To
obtain correct information capacity measurements when the signal is averaged, the noise power is
multiplied by n.

This effect is illustrated below for a camera with a one-inch sensor, which was imperfectly focused, at ISO
12800. A single image is shown on the left. Note that MTF is rough and has significant high frequency
noise bumps. For the average of 8 images is shown on the right, information capacity C is slightly
reduced because MTF is better behaved, i.e., there is less spurious high frequency response.
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Some key results of the Edge Variance method

We tested three cameras that produced both raw and JPEG output for information capacity C as a
function of Exposure Index (ISO speed setting).

Cameras used in the tests

1. | Panasonic | 2.14 um pixel pitch. An older (2010) compact 10.1-megapixel camera with a Leica f/2
Lumix LX5 zoom lens set to f/4.

2. | Sony A6000 | 3.88 um pixel pitch. A 24-megapixel micro four-thirds camera with a 60mm Canon
macro lens set to f/8

3. | Sony A7Rii 4.5 pm pixel pitch. A 42-megapixel full-frame camera with a Backside-llluminated
(BSI) sensor and a 90mm /2.8 Sony macro lens set to /8

We captured both JPEG and raw images, which were con-
verted to 24-bit sRGB (encoding gamma = 1/2.2) TIFF
images (designated as raw—>TIFF) with LibRaw, with
minimal processing (defined as no sharpening, no noise
reduction, and a simple gamma-encoding function).
Results for 48-bit Adobe sRGB conversion were nearly
identical.

The image on the right, which was analyzed in “Camera
Information Capacity: A Key Performance Indicator for
Machine Vision and Artificial Intelligence Systems” [3],
contains a 50:1 contrast Siemens star and four 4:1 contrast
slanted edges on the sides. We used the upper-left slanted
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edge for most tests. The average background of the chart is close to neutral gray (18% reflectance) to
ensure a good exposure (exposure compensation may be applied if needed and available).

The figures below show results for the luminance (Y = 0.2125‘R + 0.7154-G +0.0721-B) channel as a
function of I1SO speed (Exposure Index) for the raw—>TIFF images (solid lines) and JPEG images (dotted
lines). For the raw—>TIFF images the relationship between ISO speed and C is similar for all three cameras.

Shannon capacity C, vs. Exposure Index for three cameras

C: 4:1 slanted edge PACRY g v, ZxpOS
from 4:1 Slanted-edge images: raw—>TIFF & JPEG

— T T T T —T T T TTTTT T T T TTTT
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e Camera 1: JPEG Noise calc 2 |LSF|
Camera 2: JPEG Noise calc 2 |LSF|
Camera 3: JPEG Noise calc 2 |LSF| |4

w

[
@

The information capacity for 4:1 contrast edges, Cy,
shows similar trends to Cmax, but since the relatively
low 4:1 contrast uses only a fraction of the available
signal level, Cyis lower than Cpax or C measured on
Siemens stars. It is also highly sensitive to exposure.

N
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relatively accurate for minimally or uniformly
processed (often raw->TIFF) images, and is much
less sensitive to exposure than Cy4, making it robust
and well-suited for comparing the performance of
different cameras.
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Both C; and Cnax give the expected results: Cis
higher for the higher quality (larger pixel) sensor,

N

Shannon information capacity C (Bits/Pixel)

-
<]

and decreases for increased Exposure Index (less Crmax as a function of Exposure Index (El) for TIFF and

exposure and more analog gain, resulting in poorer JPEG images 2
Exposure Index (ISO speed)

SNR).

Sharpening

Simple sharpening, which has the same effect on the signal and noise response, and therefore does not
change S(f)/N(f), would not be expected to have much effect on C. This is indeed the case.

The two examples below show that (uniform) USM sharpening has little effect on slanted-edge
information capacity. The two images (originally a minimally processed TIFF) have been strongly USM
sharpened in the Imatest Image Processing module with Radii = 1 and 2 and Amount = 2. The original
unsharpened TIFF has C4 = 2.06 and Cmax = 3.82 b/p.
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TIFF sharpened with Radius = 1, Amount = 2. TIFF sharpened with Radius = 2, Amount = 2.

For R=1, A=2, o(Location) = 0.11 pixels. For R=2, A=2 (stronger sharpening), o(Location) = 0.108
pixels. This is a relatively small increase over the unsharpened o(Location) = 0.0846 pixels.

This highlights another benefit of information capacity measurements. Unlike MTF50, they do not
reward excessive sharpening, which creates “halos” near edges, making the image look sharp in small
displays, but creating artifacts that degrade image appearance on large displays [9]. They also have a bad
reputation for machine vision applications.

Edge location variance (or standard deviation)
An additional result can be derived from the Edge Variance method: The edge location variance (or
standard deviation), 02(Location) or o(Location).

Edges are important because they are often required to distinguish an object. For example, athe only
way to distinguish a gray vehicle from a gray concrete background is with the edges.

For signal voltage V(x), the edge is defined as the location x where the Line Spread Function LSF(x) =
dV(x)/dx (in units of 1/pixels) has its peak value. The standard deviation of the edge location is
maximum o, (x) o, (x) at peak LSF(x)

L i = = i its of pixel
o(Location) maximum v (x)/dx peak LSF(x) in units of pixels

The actual location of an edge is affected by interference from neighboring edges (mostly the closest
edge) as well as g(Location). When edges are close together (small w), interference causes edge
amplitudes decrease, which increases sigma, and it also causes edge locations to shift. Displays of LSF
amplitude and shift versus spacing are shown below for the image used for Signal and noise result
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(above), and the same image moderately sharpened with Radius = 1 and Amount = 2, in Sharpening
(above). o(Location) is not a major metric. SNRi and Edge SNRi are more useful.
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The difference between the two results is not large. At a pixel spacing of 1 (labeled 10° on the x-axis), the
difference between ALSFnaximum + 0(Location) and ALSFninimum - 0(Location) is 0.36+0.31 = 0.67 for the
TIFF unsharpened image and 0.32+0.17 = 0.49 for the R1A2 sharpened image: a modest improvement.
For a strongly oversharpened (R2A5) image, o(Location) increases to 0.125, but ALSFio @ pixel spacing
1=0.07+0.34 = 0.43. This improvement was surprising since the edge has a large peak. At higher ISO
speeds, o(Location) would have been much larger and there would be less improvement with
sharpening. We will present better performance metrics, SNRi and Edge SNRI, below.

Summary of the Edge Variance method

The Edge Variance method is the first of two methods for calculating information capacity, C,
from slanted edges.
It has a limited set of results. There are many more in the Noise Image method.

o Information capacities Cs and Cmqy and o(Location),

o Aplot of spatially dependent noise power 0s2(x) or amplitude os(x), which can be

useful for determining if the image has been bilateral-filtered.

Produces a useful approximate measurement of C for bilateral-filtered images, but more
accurate results are obtained from uniformly/minimally processed images, which should always
be used when a camera is being evaluated for use in MV/AIl systems.
Results are easy to obtain, even though the algorithms behind them can be complex. For the
most part, Imatest users don’t need to be concerned about the calculation method.
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The Noise Image method of calculating information capacity-related

metrics

The Noise Image method is the second of two methods for calculating information capacity and related
metrics. It was developed shortly after the Edge Variance method, and it offers a particularly rich set of
measurements.

This method involves inverting the 1ISO 12233 binning procedure. Noting that the 4x oversampled edge
was created by interleaving the contents of 4 bins, each of which contains an averaged (noise-reduced)
signal derived from the original image, we apply an inverse of the binning algorithm to set the contents
of each scan line to its corresponding interleave (Inverse binned... ROI, below). Since the inverse-binned
image is a nearly noiseless replica of the original image, we can create a noise image by subtracting the
inverse-binned image from the original image (which must be corrected for illumination nonuniformity in
the direction of the edge).

The three images are shown below. The noise image (below-right), which has a mean value of 0, has
been lightened and contrast-boosted for display. The other images are displayed with gamma-correction.

(1) Original ROI (2) Inverse-binned / (3) Noise image ROI
de-interleaved / reverse-projected
These images allow several additional image quality parameters to be calculated, including Noise Power
Spectrum (NPS) and Noise Equivalent Quanta (NEQ), well-known in medical imaging systems, and
described in an excellent review paper by lan Cunningham and Rodney Shaw [10]. These measurements
are not well-known outside of medical imaging, in part because they have been difficult to measure.

An alternative information capacity measurement, Cngg, derived from NEQ, is described below.

Displaying the results

The key results are in the Information-related, NEQ, SNRi,... plot of the Imatest Rescharts window (used
to run SFRplus, eSFR ISO, SFRreg, and Checkerboard interactively).
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This plot has numerous display options. It displays two results: one at the top and one at the bottom.
The contents of the upper and lower plots are selected In the Display area on the right of the Rescharts
window, shown in the middle column of the table below.

Noise Power Spectrum (NPS)
Noise Equivalent Quanta (NEQ)

e ———
) Noise Equiv. Quanta (NEQ)  ~ UpﬂeLEk':_t__.>

MTE

Edge linearized unnormalized
Line Spread Function (LSF)
Edge noise voltage

Noise autocorrelation

SNRi square w x w

SNRi rectangle w x 4w

SNRi square per pixel?

SNRi rectangle per pixel?
LSF Doublet shift

LSF Doublet amplitude

LSF doublet S/N energy
Edge SNRi square w x w
Edge SNRi rectangle w x 4w
Edge SNRi 1D doublet
Object matched filter

Edge matched filter

1 Center V1 0.0 L W

[~] Log x-aui Image Stats
Lower plot

Square wsibility image hd

Tl )
d Qe p 2.0.b.2. ALPHA
Noise image crop C) ilTIitESto
Results summary
Square visibility image
Square visibility - LARGE
Moise Voltage Spectrum
Noise Power Spectrum (NPS)
Noise Equiv. Quanta (NEQ)
MTF
Edge linearized unnormalized
Line Spread Function (LSF)
Edge noise voltage
Noise autocorrelation
SMRi square w xw
SNRi rectangle w x dw
SMRi square per pixel
SNRi rectangle per pixel
LSF Doublet shift
LSF Doublet amplitude b

Upper or Lower plot Display settings Lower plot-only
. Display MTF compensation
Noise Voltage Spectrum 22 Information-related: NEQ, SNRi >

Original image crop

Unbinned image crop
(Reverse-projected; low noise)

Noise image crop (Original — Noise)

Results summary (Shown above)

Square visibility image

Square visibility — LARGE

Here is an example, with Noise Power Spectrum (NPS) displayed on the top and Results summary

displayed on the bottom.
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Noise Power Spectrum (NPS) displayed on the top and Results summary
(showing the two different information capacity calculations) on the bottom.

Noise Voltage or Power Spectrum (NPS)
NPS (upper plot above) can be displayed
with a logarithmic x-axis (above) or a linear

x-axis (on the right; selectable by the Log x-
axis checkbox, above). The Noise Power and
Voltage Spectrum plots have the same
shape: only the y-axis labels are different.

The 1D Noise Power or Voltage spectrum is
derived from a 2D Fourier transform (FFT) of

Noise Power Spectrum (NPS)

the noise image. The initial 2D FFT has zero
frequency at the image center. The image is
divided into several annular regions, and the

average noise power is found for each region. NPS is used for the NEQ and SNRi calculations.
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Because this procedure does not maintain the invariance in energy between the spatial and frequency
domain implied by Parseval’s theorem, [[ 02(x,y) dx dy = [[ NPS(vy, vy) dv, dvy, where vis
frequency, we must apply a correction to the NPS.
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Noise autocorrelation
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demosaicing and fixed-pattern noise are removed
and the primary noise source is photon shot noise.

The idea behind the hypothesis is that light incident
on the sensor is uncorrelated, so that if there were - S ——————
no crosstalk, the noise would be white. L

: : Plixels — : ; : : :
This image used for the upper plot was white- 0 1 2 3 4 5 6 7 8 9 10
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theorem.

xR G B ¥
10323 0227 0474 0235
2 0473 0147 0100 0.182
3 0422 0121 0075 0432

The image in the lower right was not white-balanced. . S
This increases the red channel autocorrelation e e o Wi
distance, as expected. P\ ] |

Noise autocorrelation
A similar autocorrelation plot can also be obtained
from a flat field region in the Image Statics module. lllumination nonuniformity has been corrected to decrease the
(spurious) autocorrelation at large distances.

Noise Equivalent Quanta (NEQ)

NEQ is a figure of merit used in medical imaging [5], but is unfamiliar in general imaging. It is described
in a 2016 paper by Brian Keelan and in an earlier paper by Cunningham and Shaw [10]. Essentially, itis a
frequency-dependent Signal-to-Noise (power) Ratio, in contrast to MTF, which is signal amplitude
response-only.

Units are the equivalent number of detected quanta that would generate the measured SNR when
photon shot noise is dominant.

WMTF(f)

NEQ() ="ps

where the mean linear signal, y, can be defined in either of two ways, depending on how NEQ is to be
interpreted.

In the standard definition of NEQ, where NPS is dominated by photon shot noise, u? = V;2,4n = G2,
where g is the mean count of the detected quanta. But because noise is uncorrelated, NPS = 4 = q.
Therefore, NEQ is proportional to the count of detected quanta, g. For example, NEQ = 200 corresponds
to a mean of ¢ = 200 detected quanta per pixel (assuming photon shot noise is dominant).

The above equation, i = Vy,eqn = G, is appropriate if NEQ is to be used for calculating Detective
Quantum Efficiency), DQE(f) = NEQ(f)/q;, where g; is the mean number of quanta incident on each
pixel. Measuring DQE requires a separate (and very exacting) measurement of g;. It is not yet in Imatest.
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Getting familiar with the meaning and use of R—

SonyAB000_Star_SG__60mm_fB_I1SO100_s0.8_00081_stow 1= L= T
T T T T T T T
Noise Equivalent Quanta (NEQ)

NEQ may take some time. Characterization of
imaging performance in differential phase
contrast CT compared with the conventional
CT: Spectrum of noise equivalent quanta
NEQ(k) [17] by Tang et. al. is an excellent
example of how NEQ is used in medical
imaging.

Noise Equivalent Quanta (NEQ) per pixel

The NEQ plot is somewhat rough because of Frequency, Cycles/Pixel s
the relatively small size of the slanted-edge 0 005 01 015 02 025 03 035 04 045 05
ROIs (Regions of interest). It can be improved Noise Equivalent Quanta (NEQ)

(made smoother) using Signal Averaging.

Information capacity from NEQ, Cnerg
A variant of NEQ, NEQinsn(f) (not plotted), calculated using 4 = Vp_p/V12 (to be consistent with the

Edge Variance calculation), is used to calculate information capacity, Cngg.

” 0.5 ZMTF?
CNEQ — f ]0g2(1 + NEmeo(f)) df = f 10g2 <1 + #N?(f()f)) df
o 0

where bandwidth W = fy,q= 0.5 Cycles/Pixel, is the camera’s Nyquist frequency. [Author’s note: | thought
I'd discovered this connection, but it’s in papers on PET scanners and Digital Mammography by Christos Michail et.
al. [6],[7]. Not papers anybody outside medical imaging is like encounter.]

Channel R G B Y
The key resu|tS, C4(NEQ) and Cmax(NEQ), are Info capacity CMM(EdgeVarJ =354 4M 376 4.23
A . X Info capacity Cq{EdgeVar) =163 212 1711 222
included in the Results summary. They are slightly Infocapacity C,,_(NEQ) =38 437 394 445
different from the Edge Variance results, most likely Info capacity C,(NEQ) =155 207 165 215
because the calculated Noise Power Spectrum, o )
i _ ] Moise image variance = 1.68e-05 7.82e-06 1.3e-05 6.256-06
NPS(f), is used. (The Edge Variance calculation Noise image siddev = 0.0041 0.0028 0.00361 0.0025
. . . Noise 1D power = 1.77e-05 8.51e-06 1.37e-05 6.96e-06
assumes constant NPS, e, white noise. Input signal V(P-P) =0.105 0.103 00879 0.103
Input signal V(mean) = 0.0886 0.0858 0.0777 0.0858

Results summary

Ideal Observer SNR (SNRI)

SNRi is a measure of the detectability of objects, described in ICRU Report 54 [16] and in papers by Paul
Kane [14] and Orit Skorka and Paul Kane [15]. The two-dimensional equation in [15] gives the best
results.

2
MTF?
SNRi? zﬂ (lG(Vx;Vy)| (vx,Vy)>dvx av,

NPS(vy,vy)
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G (v, vy) is the Fourier transform of the
rectangular object to be detected, defined
below.

SonyA6000_Star_SG__60mm_f8_ISO100_s0.8_00091_standard.tiff
T — T T

—

13-Nov-2023 12:05:23 "7
ROl 1: 183x265 pixels
6024 x 4024 pixels (WxH)
Chart contrast ratio = 4
mean noise [Auto]
MTF50 = 0.2137 C/P = 1720 LW/PH |

w x 4w rectangle SNRi

MTF(v) and NPS(v) are defined in one
dimension. Spatial frequency v =

/v,? + v} has units of Cycles/Pixel.

Objects to be detected are typically
rectangles Of dimensions W x kW where k - Feature size w in pixels for w x 4w rectangle —
1 for a square or 4 for a 1:4 aspect ratio = 10° 2 s 10! 2
rectangle.Amplitude, Vp_p, is typically

obtained from a chart with a 4:1 contrast ratio.

201

SNRi dB for w x 4w rectangle
w
(=]

o
T

SNRi for sharp, low-noise (ISO 100) image

x Yy
g(x,y) =Vp_p - rect (W) - rect (W)
where rect(x/w) =1 for -w/2 <x<w/2; 0 otherwise. Rectangular function
G(vxVy) is the Fourier transform of the object, g(x,y), rect(X/w) | w —
expressed in two dimensions.

sin(mwv,) sin(kwv,,)

G(vy,vy) = kw? Vp_p = Vp_p Grect (Vx, Vy)

WYV, Thkwv,,

where Gpect = W sinc(ww/2) = w sinc(mwv) is the Fourier transform of rect(x/w) for frequency v.
Note that G has units of 1/v2, and since v has units of cycles/pixel, G has units of pixels?.

SNRI? is calculated numerically by creating a two-dimensional array of frequencies (0 to 0.5 ¢/p in 51
steps) with v, on the x-axis v, on the y-axis, filled with frequency v = ’v,% + V3. These frequencies are
used to create a 2D array that can be numerically summed [15].

Ny MTF?(i,j) G%(i,))

j-1 NPS(i,))

Ny
SNRi? = Av, Av, Z )
i

SNRi is displayed for each color channel for w=0.5,0.7,1, 1.4, 2, 3,4, 7, 10, 14, 20.

Note that like C4, SNRI is strongly affected by exposure and chart contrast. But unlike C, SNRI is affected
by image signal processing (sharpening, etc.).

Although SNRi is a powerful measurement, we currently prefer a closely related measurement, Edge
SNRIi, for determining the performance of pre-filtering (Image Signal Processing performed before
sending the image to the Object Recognition/Machine Vision/Al block).

SNRI: is equivalent to the total (integrated) Signal/Noise energy of the object in the spatial domain.
This is best illustrated in one dimension, using Parseval’s theorem.

o0 1 [oe] [oe]
f @l = o f IR@)Pdo = f IR@rf)ldf
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where

G(f) MTE(f)
JNPS(f)

SonyA6000_Star_SG__860mm_f8_IS0100_s0.8_00091_standard.tiff
T L

r(x) =V -V(x—-w))/o and R(f) =

SNRi displayed in dB per pixel?

Because standard SNRi plots can be difficult to
read (in part because SNRi has units of pixels?),
we have added a plot of SNRI in dB per pixel?,
shown on the right. It is somewhat easier to
read than the standard SNRi plot, but it is more
of a relative measurement—for evaluating
changes from image processing.

Clwxdw rectangle éNRiﬁerﬁixei [

w
(=]
T

N
o
T

|__ROF"T83x265 pixels |
65024 x 4024 pixels (WxH)
Chart contrast ratio = 4
.. . :meannoise [Auto]
MTF50 = 0.2437C/P = 1720 LW/PH

Tip— Click on Data cursor in the dropdown , , Feature size win pixels for w x 4w rectangle —

LS}
o
T

SNRi dB per pixel for w x 4w rectangle
o

below the thumbnail on the upper right to get a &s 10° Z g 1o &
reading of the actual value. SNRI in dB per pixel? for low-noise (1SO 100) image

Object visibility
The goal of SNRi measurements is to predict object visibility for small, low contrast squares or 4:1
rectangles. The SNRI prediction begs for visual confirmation.

We have developed a display for Imatest that does this with real slanted-edge images. Despite the
trickery, the data is directly from the acquired image.

SonyAB000_Star_SG__B0mm_fB_IS0100_s0.8_00091_standard.tiff

SonyAG000_Star_SG__60mm_f8_ISO 12800_s1-160_00099 .tiff

14 14

widths
pixels

widths
pixels

Chart contrast=4 ROI1: 122x132 pxls — 136x132

Chart contrast =4 ROl 1: 122x132 pxls — 136x132
Low noise ISO 100 (left) Noisy I1SO 12800 (right)
MTF50 = 0.214 ¢/p; Cmax = 4.24 b/p; MTF50 = 0.140 ¢/p; Cmax = 1.37 b/p.

We show two images, above: one for a relatively low noise image and one for a noisy image (both from a
camera with a Micro Four-Thirds sensor, at ISO 100 and 12800, respectively). The sides of the squares
arew=1,2,3,4,7,10, 14, and 20 pixels. The original chart has a 4:1 contrast ratio (light/dark = 4),
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equivalent to a Michelson contrast, Cpsicn =

__ light-dark
light+dark

middle and inner squares have Cuicr» = 0.3 and 0.15, respectively.

= 0.6. The outer squares have Cuicn = 0.6. The

How to use these images — Inconspicuous magenta bars are designed to help finding the small squares,
which are hard to see. The yellow numbers are the square widths in pixels. The SNRi curves (initially, at
least) represent the chart contrast — with 4:1 (the ISO 12233 standard [4]) strongly recommended. The
outer patches correspond to the SNRi curves, where, according to the Rose model [10], SNRi of 5 (14
dB) should correspond to the threshold of visibility.

The SNRi curve on the right is for the noisy
ISO 12800 image on the right, above. The w =
1 squares are invisible; the w=2 and 3
squares are only marginally visible, and w =4
squares are clearly visible. In the plot, the Y
(luminance) channel SNRi at w =2 is 9 dB; it
reaches 11 dB for w = 3; close to the
expectation that the threshold of visibility is
around 14 dB.

SNRi dB for w x w square

SonyA6000_Star_SG__60mm_f8_IS012800_s1-160_00099.tiff

30 r

20

w x w square SNRi

MTF50 = 0.1398 C/P = 1125 LW/PH

Feature size w in pixels for w x w si
1 I

13-Nov-2023 12:13:22
ROl 1: 183x265 pixels
6024 x 4024 pixels (WxH)
Chart contrast ratio = 4
mean noise [Auto]

quare —

10° 2

5

107 20

Only original pixels were used in these two images of squares, but we used a little smoke and mirrors to
make the squares that have the same blur as the device under test. Feel free to skip this explanation.

How the squares were made

Expand the image if needed (if the original is less than 170 pixels wide) to make room for all the squares by
adding mirrored versions of image to the left and right to the sides of the image. If needed, add a cropped
Create a mask consisting of ideal wxw squares. The background is 0 and the squares are 1. The sides are

Blur the squares with the MATLAB filter2 function. This is the “smoke” part. Determining the blur kernel was
challenging. We found that we couldn’t get good results by just using the 1D Line Spread function (LSF) in 2D.

1.
vertical mirrored image to the bottom.
2. Create a (horizontal) mirror of the full image. This is the “mirror” part.
3.
sharp.
4.
A more complex transformation was required.
5. Linearize the two images (remove the gamma encoding).
6.

Combine them using the mask, keeping the original image where the mask = 0, using the mirrored image
where the mask = 1, and blending them elsewhere.

7. Reapply the gamma encoding.

N. Koren
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Edge Signal-to-Noise Ratio (Edge SNRi) 60 f:i“:—::::i-r::ﬁ-‘?‘ﬂ?“;P".g. :
Edge SNRi is an edge-based measure of the detectability sl 0r Cryio =4 Cuichaison = 06

of the edges of small objects, similar to SNRi, described
above and in papers by Paul Kane [14] and Orit Skorka

and Paul Kane [15].

|H(v,, v )|2 MTF?%(v,,v,)
Ed SNR'2=ﬂ =2 =22 dv, d
ge ' NPS(vy, vy) Ve Wy

02-Nov-2023 14:38:48
20 ROI1: 169x263 pixels
4288 x 2872 pixels (WxH)

mean noise [Auto]
10 MTF50 = 0.1579 Cy/Pxl = 907.2 LW/PH

Feature size w in pixels for w x 4w rectangle —

SNRi dB for w x 4w rectangle
w
=]

0.5 10“ 2 5 10" 20

H(vyVy) is the Fourier transform of the edges (the
gradient) of the object to be detected; defined below.

WX Aw rectangular Edge SNRI ROI

For a rectangle of dimensions w x kw, the function is the
derivative, h(x, y), of the rectangle, g(x, y), that
describes the object.

0D2-Nov-2023 14:38:48
ROI 1: 169x263 pixels
4288 x 2872 pixels (WxH)
mean noise [Auto]
MTF50 = 0.1579 Cy/Pxl = 907.2 LW/PH

Feature size w in pixels for w x 4w rectangular impulse —
1 . 1 L i

Edge-SNRi dB for w x 4w rectangular impulse

Vp-pis typically obtained from a chart with a 4:1 contrast
5

ratio. 05 10° 2 5 10’ 20
SNRI curve (Upper), Edge SNRi curve (lower),
1” sensor raw-converted with minimal processing, 1SO 200

h(x,y)=Vp_p-d[rect( )] /dx- d[rect( )] Jdy = Vp_p 1,( ) 1 (L)

kw

where [;(x/w) = d(rect(x/w)/dx is called the “odd impulse

pair,” consisting of a pair of Dirac delta functions of SERmERE e J‘_—W_’r
opposite polarity separated by the object width w. It is 1 w ( w)]

I ==\ bl Iy _ 2
shown on the right. 1(x/w) 2[ (x+2) X3

H(vxVy) is the Fourier transform of the edges of the object to be detected, equivalent to 2wv G(vyv,) for
frequency v. Expressed in two dimensions,

H(vx, vy) = 2 Vp_p sin(mwvy) sin(rkwv,,)

Edge SNRi? is calculated using a similar equation to standard SNRi2.

Ny MTF2(i,j) H%(i
Edge SNRi* = Av, Av, z z i N(PS]()l ])( =

Edge SNRi is displayed for each color channel forw=0.5,0.7,1, 1.4, 2, 3,4, 7, 10, 14, 20.

Unlike C, Edge SNRI is affected by signal processing (sharpening, etc.), making it useful for evaluating
pre-filtering (ISP filtering applied prior to the object recognition/machine learning/Al blocks).

Line Spread Function (LSF) doublet results
Edge SNRi is based on pairs of Line Spread Functions of opposite polarity called LSF doublets, r(x), which
are also used in several key calculations.

H(v) MTF (v)

JNPS()

r(x) = (LSF(x) — LSF(x —w))/o and R(v) =
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LSF Doublets, r(x), are illustrated below for w = 5.0 and 0.5 pixels.

LSF doublet for spacing = 5 pixels; Peak locs =40.187 602121 LSF doublet for spacing = 0.5 pixels; Peaklous, AT @ Q435

051

-05 |

L L . . L 15 L . . . I
1] 5 10 15 20 25 0 5 10 15 20 25

LSF Doublet. w = 5.0 pixels. LSF Doublet. w = 0.5 pixels. Amplitude is 1/3 as large as for
w = 5.0 pixels.

As spacing w decreases,

e the peaks are closer (but shifted more from their original locations), and
e amplitude decreases. These are plotted below.

SonyA6000_Star_SG__60mm_fB_ISO100_s0.8_00091_standard.tiff U203 107 2 2 10°
T T T T T - oo T T T T T T T T T T
0.4F LSF Doublet shift in pixels 4 |LSF Doublet amplitude|
o 03F e(location) = 0.0776 | 3l
‘e ey
3 02t =
1= %, 25
z 01 E
£ o
(7] -
g Of - |
-] 3 29-0ct-2023 23:04: 1
3011 =] ROI1: 1831265 pxls
m % 6024 x 4024 pixels (WxH)
h 02 245t MTF50 =02137C/P |
- - Chart contrast = 4
-03F Error bars represent 1 o - 4 =046 8 bit
0.4 s IDouhIet spacinlg (pixelsl) e R Sy L e e o IDoubIetspacir!g {pixels’ —
05,3 10° 2 5 10 0.5 10° 2 5 10'
LSF Doublet shift as a function of spacing w LSF Doublet amplitudes as a function of spacing w

Edge SNRi in frequency and spatial domain
As a result of Parseval’s theorem, Edge SNRIZ, which is defined in frequency domain, is equivalent to
the total (integrated) Line Spread Function doublet divided by Noise energy in the spatial domain.

This is best illustrated in one dimension. For LSF doublets in both domains,

o 1 (@ [ fNyq
f |r(x)|?dx = Ef IR (w)|?*dw =f |IR(2mv)|%dv = 2f |R(2mv)|%dv
[o'e] —00 —co 0

Because the integrands are energy, dB = 10 logxo.

The upper plots below are the spatial domain result, f_oooolr(x)lzdx = ffowlLSF(x)/noiselzdx as a
function of doublet spacing (feature size w).

The lower plots are the frequency domain results, Edge SNRi = 2 f;NquB(an)lzdf as a function of
w.
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There is slightly more discrepancy between the lower and upper plots for the real image (on the right)
because noise is not white, as assumed by the spatial domain calculation. In the real image on the right,
the Noise Spectrum (Power or Voltage) falls off with frequency.

n‘sFRJIso, _color_| dges-png-inmp TGan‘;ssTlinelin.png 1S0200_LX100_22.7mm_f4_1010871.png
10l LSF Doublet S/N energy. ROI 1 | 16+ LSF Doublet S/N energy ROI 1
. 1 T e S ———
B B ——
o @
5 . ﬂ=1
z =z ]
ff 12-Now-2023 13:.07:49 w 13-Nov-2023 10:33:33
o ROI1: 1853225 pals ] E ROI1: 169x263 pxls
3 MTF50 = 0.1852 C/P o MTFS0 =0.1578 C/P |
3 Chart conrrast= 4 | F Chart confrast = 4
(=] mean nolse [Auto] a mean noise [Aute]
§ C,&C ., forYchannel ﬁ C, & C,.;, for Y-channel
Edge var: 0968 1.6 Edge var. 144 3.26
NEQ:  0.767 139 NEQ: 1.1 204
20 Doublet spacing (pixels) —  “(ocaton= 027 2r Doublet spacing (pixels) — aflocalion) = 0,13
0.5 10° 2 5 10 20 05 10° 2 5 10! 20
12r 1D Edge SNRi ROI 1 1 157 1D Edge SNRi ROl 1

Edge SNRi dB for 1D edges
-

13-Nov-2023 10:33:33
RO! 1: 169x263 pixels
4288 x 2872 pixels (WxH) |
Chart contrast ratio = 4

12-Nov-2023 13:07:49
RO 1: 145x225 pixels
3509 x 2400 pixels (WxH)
Chart contrast ratio =4

Edge SNRi dB for 1D edges

mean noise [Auto] g mean noise [Auto]
MTF50 = 0.1852 C/P = 889.2 LW/PH | ’ MTF50 = 0.1579 C/P = 907.2 LW/PH

4 Feature size w in pixels for 1D edges — 4 ot Feature size w in pixels for 1D edges —
05 10° 2 5 10! 20 05 10° 2 5 10" 20
Simulated image with white noise Real image with spectral noise

Comparison of spatial and frequency-domain Edge SNRi measurements

Table of key measurements from the Noise Image method

Measurement

Description

Noise Power Spectrum, NPS(f)
(or Noise Voltage Spectrum)

Used in NEQ and SNRi calculations. NPS was implicitly assumed to be constant
(white noise) in the Edge Variance method.

Noise autocorrelation

The inverse Fourier transform of the Noise Voltage Spectrum. May be related to
sensor electrical crosstalk. An experimental measurement.

Noise Equivalent Quanta,
NEQ(f) and NEQin(f)

A measure of the frequency-dependent signal-to-noise ratio (SNR).

INEQ(f) = u?> MTF(f)?/NPS(f), where u = Viean is relatively unfamiliar
outside of medical radiology. NEQ(f) is equivalent to the number of quanta
detected by the sensor when photon shot noise is dominant. It can be used for
calculating Digital Quantum Efficiency (DQE), when the density of quanta
reaching the image sensor is known. NEQ;f, (f), derived from y =

Vp_p/V12,is used to calculate information capacity Cngo.
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Information capacities correspond to C4 and Cmax from the Edge Variance method. Derived

Ci(NE

and Ciax(NEQ) from NEQj,r,(f). They are close, but not identical.

Ideal observer Signal-to-Noise

From Kane [14] and Skorka and Kane [15], “The Ideal Observer is a Bayesian
decision maker that maximizes the statistical precision of a hypothesis test with

Ratio, SNRi

two possible outcomes.” SNRi is a metric of the detectability of small objects
(squares or rectangles), typically of low contrast. SNR/? is equivalent to the total
(integrated) Signal/Noise energy of the object in the spatial domain.

Object visibility

Images of low contrast squares of various sizes: a visual indicator of object
visibility. Correlates with SNRi.

Edge SNRi

Similar to SNRI, except that it is derived from the object edges, i.e., Line Spread
Function doublets (pairs of LSFs representing the edges of the object). Edge
ISNRI? is equivalent to the total (integrated) Signal/Noise energy of the LSF
doublet Signal/Noise energy in the spatial domain.

Summary of the Noise Image method

The Noise Image method is the second of two methods for calculating information capacity, C,
from slanted edges. It uses a 2D image of the noise to calculate several image quality metrics.

It only gives reliable results with uniformly or minimally processed images, which can be
distinguished from bilateral-filtered images by the absence of a peak in 0s2(x) or gs(x) displays.
It produces a rich set of related results, including Noise Power Spectrum (NPS), Ideal observer
SNR (SNRi), Edge SNRIi, Noise Equivalent Quanta (NEQ), and a second information capacity
measurement, derived from NEQ, that can be compared with the Edge Variance results (they are
slightly more accurate because NPS(f) is not assumed to be constant).

Image Signal Processing (ISP)

Several recent papers [18],[19],[20] state that appropriate image processing prior to Object Recognition,
Machine Vision or Al algorithms may improve system performance (accuracy, speed, and power
consumption). Because information capacity changes relatively little with Image Signal Processing— at
least with ISP that does not remove information, such as Unsharp Mask (USM) sharpening— it provides
little guidance about how to design optimal image processing.

Image signal processing algorithms can be designed to optimize a specific task, for example, the
detection of an object of a specific size, often a small rectangle, or its edges. In practice, ISP needs to
perform well over a range of tasks: detecting objects of edges greater than a minimum size and limiting
interference from neighboring objects.

SNRI has some drawbacks as an object detection metric. Plots of SNR/ are challenging to interpret
because SNRi increases with feature size. And there is the problem of object color. What If the object has
the same color as the background (e.g., gray cars in front of gray concrete)? In such cases it is the edge
that matters. Because of these shortcomings, we prefer Edge SNRi.
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Pre-filtering: effects of sharpening and lowpass filtering

Starting with an unsharpened image, we applied sharpening and/or lowpass filtering (blurring) using the
Imatest Image Processing module.

We show the entire Imatest Rescharts interactive window displaying the Line Spread Function and Edge
SNRI for a wx4w rectangle (as a function of the narrower edge, w). We selected smoothed peak noise
for the calculations, which gives lower performance than the mean noise, but should be more
representative of Line Spread Function edge performance. Edge SNRi is 5.3 dB for large w; -1 at w = 1.

N. Koren

Line Spread Function (LSF)

Edge SNRI dB for w x 4w rectangular edges
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The first filter is USM (Unsharp Mask) sharpened with
Radius = 2 and Amount = 3. This is moderately strong
sharpening. R = 2 was chosen because the original image
is not extremely sharp: R = 1 might be better for sharper
image (with some MTF remaining at the Nyquist
frequency).

Edge SNRi (4.7 dB for large w; -1.5 at w = 1) is worse
than for the unsharpened image at all spacings. The
reason is that sharpening increases noise, o(location) is
significantly larger (0.219 pixels) than for the
unsharpened image (0.13 pixels)

As expected for sharpening, PW50 (full width half
maximum) is reduced and MTF50 is increased.
Information capacity Cs and Cmay is slightly lower (due to
numerical calculations).

This result agrees with opinions I've heard (alas, | don’t
have good references) — that sharpening does not
improve performance of machine vision systems. But it is
not the end of the story.

The second filter was USM sharpened (with the same
values: Radius = 2 and Amount = 3) with an added
Gaussian lowpass filter with o = 1 pixel (determined by
old-fashioned trial and error). The filter was created with
the Imatest Image Processing module, but an external
program could have been used.

Good news! Edge SNRi (9.8 dB for large w; 6.1 at w=1)
was better than either the unfiltered or USM-only
filtered image. This is an extremely significant result. It
shows that correctly chosen filtering can improve the
performance of a key task (edge detection) before the
image is sent to the object recognition/machine
vision/Al processing block.

Line Spread Function (LSF)

Edge SNRi dB for w x 4w rectangular edges

Edge SNRi dB for w x 4w rectangular edges

10 [ 4288 x 2872 pixels (WxH)

05

™

ISO200_LX100_22-Tmm_f4_1010871-USM_R., {

e
=)
5]

Line Spread Function (LSF) ROI 1

14-Nov-2023 14:52:02
Peak LSF = 0,0488 DN/px|

~ 0.015 | ROI1: 1692262 pxis
) 4288 x 2872 pixels (WixH) PWS0 = 2.15 pxis
= MTF50 = 0.2938 C/P Mean noise = 0.00614
§ 001 Chartconuasi=4 = Pk smoothed noise = 0.0107
s 7=0238 B bit e(Location) = 0.219 pixels
3 peak noise smoothed [Auto] :
2 0005 |- Gt Crmax for Y-chamel
el Edgevar. 124 2.98
b NEQ:  0.996 273
&
7]
o
‘=
: o
Pixels —
0.01 ki . L . . L
-15 -10 5 0 5 10

w x 4w rectangle Edge SNRi ROI1

ROI 1: 169x262 pixels

Chart contrast ratio = 4

Feature size w in pixels for w x 4w rectangular edges —

14-Nov-2023 14:52:02
4288 x 2872 pixels (WxH)

peak noise smoothed [Auto] |
MTFS50 = 0.2938 C/P = 1688 LW/PH

05 10° 2 5 10’
Results with R2A3 USM sharpening.
LSF (top), Edge SNRi (bottom)

10 150200_LX100_22-7Tmm_f4_1010871-USM_R2A3Gauss1.png

20

y d
Line Spread Function (LSF) ROI 1

14-Nov-2023 14:47:38
ROI 1: 169x263 pxis Peak LSF = 0.0365 DN/px|
PW50 = 2.41 pxis

Mean noise = 0.00211

= Pk smoothed noise = 0.00383

o(Location) = 0.105 pixels

MTF50 = 0.2426 CIP
Chart contrast = 4

+=0239 B bit

peak naise smoothad [Auto]

5 c,&c,, for Y-channel

Edge var. 184 358

MNEQ 1.71 344

14-Nov-2023 14:47:38
4288 x 2872 pixels (WxH)

peak noise smoothed [Auto]

Feature size w in pixels for w x 4w rectangular edges —

2

ROI1: 169x263 pixels
Chart contrast ratio = 4 4

MTF50 = 0.2426 C/P = 1384 LW/PH |

10° 2 i 10"
Results with R2A3 + Gaussian USM sharpening.
LSF (top), Edge SNRi (bottom)

The key results (Edge SNRI and SNRi in dB per pixel®) for a wx4w object are shown in the Table.

20

Filter MTF50 | Edge SNRi | Edge SNRi | SNRi dB/pxI? SNRi dB/pxI? | Cmax a(loc.)
c/p w=1 large w w=1 w=5 (NEQ) | pixels
None 0.158 -0.52 5.49 21.7 28.3 2.94 0.13
USM R2A3 0.294 -1.5 4.7 20.7 26.5 2.73 0.219
USM R2A3 + 0.243 6.1 9.8 24.7 30.0 3.44 0.105
o = 1 Gaussian LPF
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o = 1 Gaussian LPF 0.122 1.56 8.5 24.9 33.7 2.72 0.89
USM R2AS (extreme 0.357 | -6.8 -1.1 14.7 20.1 2.02 0.26
oversharpening)

This important result shows that filtering can improve object detection,
indicating that it may be able to improve Object Recognition, Machine Vision,
and Artificial Intelligence system performance.

Edge SNRi appears to be slightly more sensitive than SNRi dB per pixel® (showing greater differences for
different filtering). Sharpening + lowpass filtering gives the ISC200TERION 22 Timim 01 007 LANCRZE A g
best result. Results are well-correlated with edge location Edge profit: Horiz (v-edge) (sagital) teNov2020 225314 |

. . 4288 x 2872 pixels (WxH
noise, o(location). L 123 s 851

ROI 1: 169x263 pixels
7.5% left of ctr 0_0_L

Y-channel (YL7)

10-80°% rise = 0.70 pixels
PH

The excessively oversharpened USM R2AS5 image, plotted
on the right is illustrated because it’s all too common, and
we do our best to discourage it: it is a cheap way of
improving MTF50 measurements and image appearance on rrratont 23.2.0.2 ALPHA Master
tiny displays (phones), but it creates “halos” (peaks near s 0 5 0

Pixels (Hor)
edges) that degrade appearance in large displays. The poor P ' MTFS0 = 03565 CylP

= 2048 LWIPH NR

Edge SNRi and other results are additional reasons to avoid 35 RG) = 0345 03 0384 CyP
. . . . . MTF50P = 0.252 C/P = 1448 LW/PH
this type of image processing, as have described in [9].

Oversharpening 226.1%
MTF area PkNorm = 0.227 Cy/Pxl
Peak MTF = 3.36

MTF al Nyquist

75

Info cap C, = 0.695; C__ =2.2bip;

Edge profile (linear)

from smoothed peak noise

Matched filter !

0.5
In the above section, we discussed a applying a filter F(f) o LATF: Horts (V-edge) wit ; ;
to optimize either SNRi or Edge SNRi. ! S gy Cycatel 1
. ) ) . Edge/MTF plot for extremely oversharpened image.
An optimum filter can be determined if a task (for MTF50 correlates poorly with performance.

example, detecting an edge of a certain size) is defined.
Such a filter is called a matched filter, Finatchea (f), which has the same frequency spectrum as the
measurement used to derive it. For our edge and object detection tasks,

IPCOIMTE(f)
JNPS(f)

P(f) is either G(f) (for SNRi) or H(f) (for Edge SNRi). Precise matched filters (for the above equation) are
difficult to implement exactly, and rarely needed for at least two reasons.

Fmatched (f) =

e They don’t have to be exact to perform well.

e Real world imaging systems perform a multitude of tasks: detecting objects and edges of varying
sizes and colors. Since large objects are usually detected well, it makes sense to design ISP to
perform well with small objects (or edges).

In the example below, there is some resemblance between the matched filter for edge detection with w
= 2 pixels and the sharpening + lowpass filter used above, also shown in Appendix 3. Both the matched
filter and the USM+LPF Image Processing filter have response peaks around 0.15 Cycles/Pixel.
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Fortunately, filters don’t have to be exact to perform well. The matched filter response can be used for
guide for designing the filter.

(1) IS0200_LX100_22.7mm 14 1010671 png (£288,2672 uints)

MTF (processed(2) / input(1)) for 8 segments

Matched filter Edge ROl 1 g
10°
10"
o - A a3
o 2
o 2
5 g
g V i
-l h=3
2 10° v i E
w= . 3
g :
=
10"
10 ; * Fr?q ot e cycl‘?s’PiKEI * Imatest 23.20.b.2. ALPHA Master

1 .
10 102 10 10°

Matched filter for Edge Detection USM + LPF filter from Image Processing

We have gone far enough down this deep and potentially fruitful rabbit hole. We were fortunate that the
filter parameters we found by trial-and-error were reasonably close to the matched filter calculated from
the image properties (sharpness and noise) and that they enhanced edge and object detection.

Units and Exposure sensitivity
NEQ(f) is dimensionless because uZMTF(f)2 has the same units as NPS(f).

Camera 4 (16 MP) Edge SNRi vs. Exposure

SNRI has units of pixels? because G has units of pixels? = from 4:1 Slanted-odges: raw.>TIFF

1/v2 (for frequency v), where v has units of cycles/pixel.
This is why SNRi increases by about 6 dB (4x energy) for
every doubling of feature size w.

Edge SNRi and SNRI displayed in dB per pixel® are both
dimensionless, making them somewhat easier to work
with than SNRi.

Edge SNRi

Like C4, Edge SNRi and other noise image metrics vary

—a—Edge SNRi@w=1] |
—4—Edge SNRIi@ w=2

with exposure. The plot on the right shows Edge SNRi R ‘ ‘ o0
vs. exposure for the same camera data used to plot C4 V max (PFOPOFtional to exposure"eeding 92mms)
and Cpax VS. exposure, above. Edge SNRi vs. maximum ROI pixel level Vqx

forw=1and 2.
Standard exposure — Ultimately, a standard exposure will
be needed for comparing cameras (and will need to be in the nascent 1ISO 23654 standard). For images
encoded with gamma = 0.454 = 1/2.2 (sRGB, etc.), Vmax = 0.5 is appropriate. For linear (gamma = 1)
images, the equivalent exposure results in Via = 0.5%2 = 0.22 (where Vyax is normalized to a maximum of
1).
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Summary

We have developed a powerful toolkit of new measurements — Figures of
Merit for imaging systems that combine sharpness and noise — that are
especially applicable to Object Recognition, Machine Vision, and Artificial
Intelligence systems. The key measurement is information capacity, which
can be used to predict camera performance for MV/Al systems. We also
have metrics related to specific tasks, most importantly object and edge
detection, and are potentially useful for designing ISP filters that optimize
OR/MV/AI system performance.

Using Edge SNRI, which is closely related to the more traditional object-based SNRi, we have shown an
example of image processing (sharpening + lowpass filtering) that improves object detection and is likely

to improve MV/AIl system performance. This needs to be tested.

In Appendix 4 we show that Information capacity € has a monotonic relationship
with key metrics for object and edge detection, SNRi and Edge SNRi, i.e., increasing
Cneq increases SNRi and Edge SNRI. This does not hold for standard sharpness metrics
based on MTF-only.

This relationship holds because Grec:(f) and Himpuise (f) (the Fourier transforms of the
objects to be detected) are independent of K(f), and hence Cyxg.

In other words, object and edge detection performance are functions of information
capacity.

As we become more familiar with information capacity and determine the requirements for effectively

performing tasks, we should be able to select cameras with the minimum number of pixels to meet the

spec, resulting in faster calculations, lower power consumption, and reduced cost.

The new measurements are extremely easy to obtain from any of Imatest’s slanted-edge analyses. By

default, they are included in the Edge/MTF plot and other outputs.

The key takeaway of this document is that

Information capacity C is a key measurement for predicting Object
Recognition/Machine Vision/Artificial Intelligence system performance.

Several additional metrics based on C, most importantly Edge SNRi (for edge
detection), measure specific task performance and can be used to design filters to
optimize OR/MV/AI system performance.

Standard MTF measurements are insufficient for this purpose.

Compared to the earlier Siemens star information capacity method [3], the slanted-edge method is

faster, more convenient, better for mapping results over the entire image, and better for calculating total
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information capacity. For reliable measurements, Siemens stars need to be well-centered, especially if
there is significant optical distortion. Siemens stars are better for quantifying the effects of demosaicing
methods, image compression, and image saturation.

The diagram below illustrates the two slanted-edge methods, showing the rich interconnections
between the new KPIs. For the most part, the Imatest user does not need to be concerned about details
of the two methods.

Slanted Edge variance method —— .| noie

edge J odx) . nopeak
Sum squares of signal to obtain Uniformly-processed
6?(x) = N(x) = noise power Information capacity
2 w
Savg(f) = (Vp—p MTF(f)) /12 Cc= f logz (1 + STU)) df
0
MTFU) (both methods)
Noise image from inverse binning Noise Autocorrelation
R = IFFT(/NPS
Noise Power xx (%) & (M)
Spectrum NPS(f) Noise Equivalent Quanta
2 2
v _ B2MTFX(f)
Ideal observer SNR (SNRi) NEQ(f) = NPS(f)
(standard or edge) for visibility of +

small objects (w x kw rectangles) e e

fyn fxnya |G i 2 MTF? w
swaiz = [ [P BL LD 4y, Cuo = | log2(1+ NEQU)af

Edge SNRi? has a similar equation defined by the
edges of the objects.

Summary of calculations for both methods
As of November, 2023, there is still much work to be done.

= Better understand the numeric results for SNRi and Edge SNRi

=  Partner with researchers in industry and academia to correlate information capacity C end Edge
SNRi with performance of Object Recognition, Machine Vision, and Artificial Intelligence systems
(accuracy, speed, and power consumption).

=  Continue working on a new standard for measuring camera information capacity, assigned ISO
23654 by the ISO TC42 committee.

=  Find better ways of characterizing information capacity in High Dynamic Range (HDR) sensors,
where noise is not a simple monotonic function of signal.
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Appendix I. Information theory background

Because concepts of information theory are unfamiliar to most imaging engineers, we present a brief
introduction. To learn more, we recommend a text such as “Information Theory— A Tutorial
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Introduction” by James V Stone, available on Amazon. Shannon’s classic 1948 and 1949 papers [1],[2]
are highly readable.

What is information?

Information is a measure of the resolution of uncertainty. The classic example is a coin flip. For a “fair”
coin, which has a probability of 0.5 for either a head or tail outcome (which we can designate 1 or 0),
the result of such a flip contains one bit of information. Two coin flips have four possible outcomes
(00, 01, 10,11); three coin flips have eight possible outcomes, etc. The number of information bits is
logz(the number of outcomes), which is the number of flips.

Now, suppose you have a weirdly warped coin that has a probability of 0.99 for a head (1) and 0.01 for
a tail (0). Little information is gained from the results of a flip. The equation for the information in a
trial with m outcomes, where p(x;) is the probability of outcome i and 7%, p(x;) = 1, is

p(x;)

H is called “entropy”, and is often used interchangeably with “information”. It has units of bits (binary
digits). Note that this definition is subtly different from the physical memory element called a “bit.”

N 1
H=) p(x)logy—
i-1

For the fair coin, where p(x;) = p(x;) = 0.5, H =1 bit. But for the warped coin, where p(x;) = 0.95 and
px2) =0.05, H=0.286 bits. If the results of the warped coin toss were transmitted without coding,
each symbol would contain 0.286 information bits. That would be extremely inefficient.

Claude Shannon was one of the genuine geniuses of the twentieth
century— renowned among electronics engineers, but little known to
the general public. The medium.com article, 11 Life Lessons From
History’s Most Underrated Genius, is a great read. (Perhaps Shannon is
considered “underrated” because history’s most famous genius lived in
the same town.) There are also nice articles in The New Yorker

and Scientific American. And IEEE has an article connecting Shannon
with the development of Machine Learning and Al. The 29-minute
video “Claude Shannon — Father of the Information Age” is of particular
interest to the author of this report because it was produced by

the UCSD Center for Memory and Recording Research, which | visited
frequently in my previous career.

Channel capacity

Claude Shannon

Shannon and his colleagues developed two theorems that form the basis
of information theory.

The first, Shannon’s source coding theorem, states that for any message there exists an encoding of
symbols such that each channel input of D binary digits can convey, on average, close to D bits of
information without error. For the above example, it implies that a code can be devised that can
convey close to 1 information bit for each channel bit—a huge improvement over the uncoded value
of 0.286.

The second, known as the Shannon-Hartley theorem, states that the channel capacity, C, i.e., the
theoretical upper bound on the information rate of data that can be communicated at an arbitrarily
low error rate through an analog communication channel with bandwidth W, average received signal
power, S, and additive Gaussian noise power, N, is

N. Koren Image Information Metrics and Applications: Reference, November 2023 p. 35


https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://www.newyorker.com/tech/annals-of-technology/claude-shannon-the-father-of-the-information-age-turns-1100100
https://blogs.scientificamerican.com/cross-check/profile-of-claude-shannon-inventor-of-information-theory/
https://spectrum.ieee.org/claude-shannon-information-theory
https://spectrum.ieee.org/claude-shannon-information-theory
https://www.youtube.com/watch?v=z2Whj_nL-x8
https://cmrr.ucsd.edu/
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Information_rate
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise

c=wiog, (1+3) = [ 1o (1+502) s
= og — ) = og

TN )y TN
This equation is challenging to use because bandwidth Wis not well-defined, noise is not white, and it
applies to one-dimensional systems, whereas imaging systems have two dimensions. Slanted-edge
analysis is one-dimensional. We have developed methods for calculating C for both the Siemens star
and slanted edge test patterns.

At this point we can hazard a guess as to why camera information capacity has been ignored for
cameras. For most of its history the hot topic in information theory was the development of efficient
codes, which didn’t approach the Shannon limit until the 1990s—nearly fifty years after Shannon’s
original publication. But channel coding is not a part of image capture (though coding is important for
image and video compression). Also, camera information capacity was not critically important when
the primary consumers of digital images were humans (though it is related to perceived image quality),
but that is changing rapidly with the development of new Al and machine vision systems. And finally,
there were no convenient methods of measuring it. (Rodney Shaw’s heroic efforts with film in the early
1960s are very impressive [11].)

Appendix 2. Obtaining Results with Imatest

Information capacity (C4 and Cmax) and related measurements can be calculated from any of Imatest’s
ISO 12233-based slanted-edge modules. If you are a beginner with Imatest, we recommend Using
Imatest — Getting started.

Some of the newer methods in this white paper are available (as of November 2023) in the Imatest 24.1
Pilot Program. Imatest 24.1 will be released in spring, 2024.

Here are some recommended links for slanted-edge modules (from the documentation page,
www.imatest.com/docs).

SFR (manual ROIs), SFRplus, eSFR ISO, SFRreg, Checkerboard (auto ROI detection)

Detailed instructions for information capacity and related calculations are on

Image information metrics from Slanted edges: Equations and Algorithms — figures of merit that combine
sharpness and noise, conveniently measured from any slanted edge, including NPS, NEQ, and SNRi.

Image information metrics from Slanted edges: Instructions — instructions on the new calculations.

We focus on the settings in the Auto detection modules (settings for SFR, which uses manually selected
ROls, are similar).

The test chart edge contrast should be between 2:1 and 10:1, with 4:1 (the ISO 12233 e-SFR standard
[4]) strongly recommended.

General good technique is recommended for acquiring images:

e Lighting should be uniform and glare-free;
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e Theimage should be well-exposed. Avoid saturation (clipping or operating in response regions
with strong nonlinearities— either highlights or shadows). For consistency in comparing
cameras, standard exposure is recommended.

e Use sturdy camera support,

e ROIs should be reasonably large: at least 30x60 pixels is recommended. More are better.

e For evaluating cameras for use in OR/MV/AI systems, we recommend minimally or uniformly
processed images: avoid bilinear filtering (commonly found in JPEGs from consumer cameras) if
possible. This can be done by starting with raw files, then converting them with LibRaw (for
commercial files) or Read Raw (for custom binary files). Tone mapping (locally adaptive image
processing) should also be avoided.

Setting Channel capacity calculations,
Make the selection in the Setup window,

ROI selection & analysis Speedup
14. Ctrs, all inner (18V,20H - of 15 sgs) v ROl size
V & H edges (both) w  Nomal: no extra reg marks 07 4 | g
Step chart Wedge (1-8) Exposure OK Crop borders (off)
mean = 0.447
Analyze color patches - Normal ROI width v
Target Detection Settings | Calc info cap - Auto & NEQ. Display NEQ ~ |7 MaxROIIth

Mo information capacity calculation

Calc information cap - Auto edge noise detect
Calc info cap - mean noise near edge

Calc info cap - smoothed peak noise

Calc info cap - Auto & NEQ. Display NEQ

—or— in the More settings window, which can be opened at any time from interactive
(Rescharts) modules.

Cale info cap - Auto & NEQ. Display NEQ ~

Mo information capacity calculation

Calc information cap - Auto edge noise detect uta
‘ Calc info cap - mean noise near edge

‘ [“] Monuniformity MTF correction ?

Cale info cap - smoothed paak noise

Calc info cap - Auto & NEQ. Display NEQ

e The first selection turns off all information capacity calculations. This is the default at the time of the 23.1
release. We may change it.

e The remaining selections determine what gets displayed in the Edge and MTF and Edge & Info capacity
noise plots.

e The second selection (Auto...) is reasonable when you don’t know whether your image is bilateral-filtered.

o The fourth selection (smoothed peak noise) is the current recommendation for edge detection
calculations (Edge SNRi).

e The fifth (last) selection displays the NEQ information capacity (described below) in the Edge/MTF figure,
which is slightly more accurate than the Edge Variance C. It is the best selection for minimally/uniformly
processed images.

Information capacity is displayed on the upper (edge) plot of the standard Edge and MTF display. Two
selections have been added to the Display dropdown menu for displaying Information capacity and
related results:
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1. Edge & Info Capacity noise
For the two plots, Information capacity is displayed next to the Edge (upper) plot.

consistency_LX100_22.Tmm_f4_i200_s1-10_1010871.tiff

1 | Edge profite NU Corr: Horiz (V-edge) (sagitta) 477
4288 x 2872 pixels (WxH)
12.3 Mpxls 16 bit E
=08 4 3 10-90% rise = 3.18 pixels 1
A el e
= SN mtotetr 0.0, Over / undershoot = 1.1%/ 0.3%
© 0.6 | 3um per pixel . Chart contrast = 4 |
B % y(chart) = 0.239 Use for MTF.
50.4 | Gamm % V(LR,mean,A)= 0.0777 0.0195 0.0582 0.048)
k-] Eoge 5.18° {Info cap C, = 1.14; €, =3.2bip;
w irom NEQ (Noise image method)
021 B Ratate 30 v Whole img Crop
0 pio - - i fitatest23:1.0:b.11. BETA Master Chart 9. eSFRISO v
-10 -5 0 5 10 15 Read image file Save Reload
Pixels (Hor) ) Acquire from Device
a2 107 consistency_LX100_22.7mm_f4_i200_s1-10_1010871.tiff
T T T . T
Mew analysis of the current image Lot
S | Mean signalL,R = i ]
£ 351 00777 poies Setup... More Settings...
g Mean edge noise LR = =
& 3T ooo212 0000738 1 Display MTF compensation
E Meap noise fr =0.00159 21. Edge & Info Capacity noise v
25 g J
8 {15, 20} pixels v
> 2
] 1 Center V1 0_0_L i
E 1) Readout
@
o
o 1
u Luminance (Y) channel v
i Help  3.4.0.0.11. BETA
Pixels (Hor) Save data Exit s imatest®

Edge & information capacity noise plot

2. Information-related: NEQ, SNR;, ...
A large dropdown menu allows any two of a large number of selections to be displayed: one on top and
one on the bottom.

MTF compensation

Display

Here are the selections. Click on the links for examples. 22 Information-related. NEQ, SNRi, v

R - " N L5F doublet S/N energy ~ Upper plot
Selections in the bottom Selections in both plots
11 Leftof@V -1_0L o
plot-only
Original image crop Noise Voltage Spectrum Log »-awds Wage Suas
Lower plot

Unbinned image crop
Noise image crop
Results summary

Square visibility image
Square visibility - LARGE

Noise Power Spectrum (NPS)
Noise Equiv. Quanta (NEQ)
MTF

Edge linearized unnormalized
Line Spread Function (LSF)
Edge noise voltage

Noise autocorrelation

SNRi square w x w

SNRi rectangle w x 4w

SNRi square per pixel?

SNRi rectangle per pixel?

LSF Doublet shift

LSF Doublet amplitude

LSF Doublet S/N energy

Edge SNRi sq impulse w x w
Edge SNRi rect impulse w x 4w
Edge SNRi 1D doublet

N. Koren

Edge-SNRi 10 doublet
Original image crop
Unbinned image crop

Noise image crop

Results summary

Square visibility image
Square visibility - LARGE
Noise Voltage Spectrum
Noise Power Spactrum (NP'S)
Noise Equiv. Quanta (NEQ)
MTF

Edge lineanzed unnormalized
Line Spread Function (LSF)
Edge noise voltage

Noise autocormelation

SNRi square w x w

SNRi rectangle w x dw

LSF Doublet shift

LSF Doublet amplitude

LSF doublet S/M energy
Edge-SNRi sq impulse w x w

£0.b.2. ALPHA

s imatest®
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Object matched filter
Edge matched filter

Appendix 3. Filtering images with the Imatest Image Processing

module

The Imatest Image Processing module (instructions on www.imatest.com/ docs/image-processing/)
includes typical camera degradation and enhancement functions. We used just two of the functions for
the filtering in this document: Gaussian filtering and USM (Unsharp Mask) sharpening. Here is an
example of the Image Processing window.

Basic instructions are

1. Press Read input file (1) to open the image to be processed.

2. Select the settings. In this case, select Filter 1 to be Gaussian with sigma = 1 pixel, and select
Sharpen (USM) with Radius = 2 and Amount = 3.

3. Press Update calculations (lower-left).

4. To save the filtered image, press Save image file (2). Make sure the file goes to the location you
want, and its name makes sense.

5. To see the effects of the filtering, Check Side-by-side view and crop the image. Until this is done,
the whole image (input or output) is displayed.

To see the MTF of the filter (below right), uncheck Side-by-side view and press MTF.

 MTF (processod2) | input(1) for 8 segmonts___

0s: ot (1) S0200_LXY00_Z2 7m_W_10I0671 png WZBG3672. i) Procesed
Lok Gaomatry
ation: B, Mo

image degradation: Bu, Noiss, Fog, stc.

Color and tonal sehanceman. mcludng HOR.

MTF (20(1) Transfer Function]

) Lacat Tans Mapping for HOR)
B ]

x| i)
(] CantrastLtd Histogram Equalization o
A o] r = o
o i v St gy Syl ’
T e e
[ Bitateral Fttar (may be siow) [arra—
& > T oo s
4 E e I |
(1 Sharpen (Unsharp Mask = USM) 2 [ viewinput | Pracessed (R} +fiter 1 + USM sharpen = LT — L
i m sty vem MTF display for Gaussian Lowpass filtering
ur 21 O Thveshold Renet Read input file {1} Toom out = H ius =2:
ey —— g s [TamE—— Anaiyais and Vons areh (MTF, SSRE are). R (o = 1) and USM sharpening (Radius = 2;
Update calculations S setings Sava image file 2) Exit Amount = 3)
Image Processing module, showing side-by-side view after processing from the Image Processing module

Appendix 4. Correlation between information capacity and

object/edge detection metrics

In this section we show how information capacity correlates with the key metrics for object and edge
detection, SNRi and Edge SNRi, which should be predictors of MV/Al system performance.
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We start with the integral form of the Shannon-Hartley equation from Wikipedia, derived in Shannon’s
second paper [2].

Frequency-dependent (colored noise) case [edi)

In the simple version above, the signal and noise are fully uncorrelated, in which case S + NV is the total power of the
received signal and noise together. A generalization of the above equation for the case where the additive noise is not white
(or that the S/N is not constant with frequency over the bandwidth) is obtained by treating the channel as many narrow,
independent Gaussian channels in parallel:

C= /{JBlogz(l-b- %)df

We define K(f) = S(f)/N(f) as the kernel of the information capacity equation.

Relating Wikipedia’s nomenclature to ours, N(f) = NPS(f) is the Noise Power Spectrum and S(f) =
Savg(f) = (k MTF(f))? = (Vp_p MTF(f))Z/lz is the signal power for calculating C.

To clarify the correlation between the metrics, it is useful to express SNRi and Edge SNRi, in one

. 2.2 2
dimension, SNRi2 or Edge SNRi? = f('P"bf(f)'NZ‘;}f)MTF m) df = [|Pov;(F)|” K(f) df

where Pypi(f) = Grece (f) = kw %m;f) for SNRi2, or
Pobj(f) = Himpulse (f) = 2nf Grece (f) = 2sin(mwf) for Edge SNRI2.

Grouping the equations for NEQ, Cneg, SNRi, and Edge SNRi, expressed as functions of K(f), reveals
something important.

KEMTFA()

NEQ(f) = NPS) 1 K(f)

w 0.5
B = fo logs(1 + NEQunso (F)) df = fo loga (1 + w2 K(f)) df

SNRi? = flGrect(f)lzK(f)df; Edge SNRi* = f|Himpulse(f)|2K(f)df

NEQ(f), CnEq, and detection metrics SNRi and Edge SNRi have a monotonic relationship
with each other, based on K(f), i.e., they all increase or decrease with K(f).

Effects of filtering — Because uniform processing — sharpening or lowpass filtering — does not affect
the MTF2(f)/NPS(f) ratio or K(f), it does not affect NEQ (f) or Cygq, as expected from the data
processing inequality. It does, however, affect SNRi? and Edge SNRi?, which have an additional

2
|Pobj(f)| term inside the integral, and can be improved with appropriate filtering.

Appendix 5. Binning noise

This “green for geeks” box can be skipped by most readers.
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November 10, 2023. We are working on an improved binning calculation that we hope will improve the
distinction between uniformly sharpened and bilateral-filtered images.

Binning noise, which has identical statistics to quantization noise, is a recently discovered artifact of the ISO
12233 binning algorithm. It is largest near the image transition — where the Line Spread Function

LSF (x) = dug(x)/dx is maximum, and it can affect information capacity measurements. It appears because the
individual scan lines are added to one of four bins, based on a polynomial fit to the center locations of the scan
lines, which is a continuous function.

Assume that n identical signals ps(x) are binned over an interval {-A/2, A/2}, where A = 1 in the 4x oversampled
output of the binning algorithm (noting that A = (original pixel spacing)/4). If there were no binning noise, we
would expect the binning noise power oanoise® to be zero. However, the values of us(xx) are summed at uniformly
distributed locations x; over the interval A, so they take on values

dp(x)

te = s () = s (9 + 8) = s (o) + 6 =7 = = s (xo) + 8 LSF (x)

for Line Spread Function LSF. Noting that & is uniformly distributed over {-1/2, 1/2} we apply the equation for
the variance of a uniform distribution (similar to _gquantization noise) to get

ngoise(x) = LSFZ(x)O-l%niform = LSFZ(X)/].Z Or  OBnoise = LSF(X)/\[E.

Although this equation involves some approximations, we have had good success calculating the corrected noise,
a2(corrected) = 62 — 02,5+ Binning noise has no effect on conventional MTF calculations.

10”7 SonyA6000_Star_SG__60mm_fB_ISO100_s0.8_00081_standard.iff <10 SonyAG000_Star_SG__60mm_fB_ISO100_s0.8_00091_standard.tiff
T T T T T T 8 T T T T S

Mean signal L,R = Mean signal L,R =
[ 0.0346 0.138 1 r 0.0346 0.138

Mean edge noise L,R = Mean edge noise LR =
[ 0.00156 0.00307 | 0.00156 0.00307
Peak noise ctr arig,sm = Peak noise cir orig,sm =
| 0.0049 0.00447 | 0.00416 0.00364

]

@
~

w
o

o

a2 o
T T
w s
T

Edge noise for Info Capacity
[

Edge noise for Info Capacity
)

(N

N
T

—
-

R o s 0 s 10
Pixels (Hor) Pixels (Hor)
Edge noise for a Micro Four-Thirds digital camera, I1SO 100, Y (Luminance) channel
from raw image converted to TIFF with minimal processing.
Left: with binning noise Right: binning noise removed

Binning noise also affects JPEG files with bilateral filtering (nonuniform sharpening). Removing it improves the
robustness of Edge Variance calculations.

For now, the Slanted edge calculation setting, on the lower-left of the More settings window, must be set to
Imatest 22.1 (recommended).
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