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The market for cameras that produce images for Machine vision (MV) and 

Artificial Intelligence (AI), in contrast to pictorial images for human vision, is 

steadily growing. Applications include automotive (driver assistance and 

autonomous vehicles), robotics, security, and medical imaging systems. 

Two questions arise when designing camera systems for such applications. 

1. How best to select (or qualify) cameras for MV/AI applications? 

2. What image processing (ISP or filtering) is optimal? 

To answer these questions, we must go beyond standard measurements of 

sharpness (MTF) and noise and apply metrics derived from information 

theory, including information capacity and related metrics for object and edge 

detection. 

These metrics are important because Object Recognition (OR), MV, and AI 

algorithms operate on information, not pixels, making them far better 

predictors of system performance than MTF or noise. 

Imatest has developed a highly convenient method for measuring information 

capacity and related metrics from the most widely used ISO standard 

resolution test pattern ― the slanted edge. We describe how the new metrics 

can be used to select (or qualify) cameras and determine the optimum Image 

Signal Processing (ISP) for Object Recognition, which is likely to improve the 

performance of MV and AI algorithms.   

http://www.imatest.com/
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A shorter, easier-to-read version of this white paper with fewer equations,  

“Image Information Metrics in Imatest,” is linked from  

www.imatest.com/solutions/image-information-metrics. 

This document describes features of Imatest 24.1, which will be available in the 

Imatest 24.1 Pilot program until it the spring 2024 release. 
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Outline 
This white paper begins with an Introduction, then it describes two mathematical approaches to 

calculating information capacity and related metrics from the slanted edge: the edge variance method 

and the noise image method.  

We describe several information capacity-related metrics (measurements that combine sharpness and 

noise). This leads to the key object and edge detection metrics, SNRi and Edge SNRi, that can be used to 
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design a filter that significantly improves edge and object detection prior to sending the image to the 

MV/AI algorithm. 

We will not cover important metrics not directly related to information, including dynamic range and 

susceptibility to stray light. 

Finally, five appendices introduce information theory, describe how to filter images and obtain results 

from Imatest, show how the key detection metrics correlate with information capacity, and explain 

binning noise (obscure but important). 

Introduction 
Traditional image quality measurements are based on several image quality factors, including sharpness, 

noise, dynamic range, optical distortion, tonal and color response, and spatial uniformity.  

These measurements have proven useful for human vision, where tradeoffs are often required. For 

example, sharpening makes fine features more visible to the human eye, but it increases noise. Choices 

are often based on experience; they come down to what looks best, i.e., what has the most pleasing 

appearance for the application. 

Object Recognition (OR), Machine Vision (MV) , and Artificial Intelligence (AI) systems are different. 

System performance is not dependent on image appearance. A more objective metric is required. 

Information 
Information is a metric that quantifies how much is learned from a measurement. For example, an 

individual pixel in a blurred image is highly correlated with its neighbors, so little is learned from its 

contents. But if the image is sharp, it is weakly correlated, and much more can be learned from its 

contents, i.e., it contains more information. 

The concept of information dates from 1948 and 49 in two celebrated papers by Claude Shannon [1],[2]. 

Appendix I contains a brief introduction to information theory. Earlier work on measuring information 

capacity from Siemens Star images [3] will only be briefly referenced in this document. 

In electronic communications, information capacity is the maximum rate that information can be 

transmitted through a channel without error. In images, it is the maximum amount of information that a 

pixel or image can hold. 

The slanted edge 
The slanted edge, which is a key part of the ISO 12233 standard, “Photography — 

Electronic still picture imaging — Resolution and spatial frequency responses” [4], is 

the most convenient and widely used resolution test pattern. It is highly efficient in 

its use of space (with multiple edges, sharpness can be mapped over the image 

surface), and calculations are very fast.  

Imatest offers several charts with multiple edges that can be automatically detected 

and rapidly analyzed. Some of the charts offer additional color, tone, noise, and 

distortion analysis. 
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Information capacity can be calculated from an overlooked capability of slanted-edge regions that was 
quite literally hidden in plain sight. To understand it, we start with a summary of the standard ISO 
12233 Edge SFR (e-SFR) algorithm.  
 

1. The image should be well-exposed, avoiding the dark “toe” and light “shoulder” regions. 
2. Linearize the image by applying the inverse of the 

encoding gamma curve or using the edge itself if 
the chart contrast is known.  

3. Find the center of the transition between the 
light and dark regions for each horizontal scan 
line. 

4. Fit a polynomial curve to the center locations. 
5. Depending on the location of the curve on the 

scan line, add each appropriately shifted scan line 
to one of four bins.  

6. Combine the mean signals in each bin to obtain 
the 4× oversampled averaged edge for the scan 

lines, 𝜇𝑠(x) =  
1

𝐿
∑ 𝑦𝑙(𝑥)𝐿−1

𝑙=0 . 

7. Modulation Transfer Function MTF(f) can be 
calculated by differentiating the averaged edge, 
windowing it, then taking the magnitude of the 
Fourier transform, normalized to 1 (100%) at zero 
frequency. MTF(f) is displayed in the lower plots 
of the Edge/MTF figure. Example on the right. 

 

 

The Edge Variance method 
The Edge Variance method uses an overlooked capability of the ISO 12233 binning algorithm to calculate 

information capacity. 

By summing the squares of each scan line, 𝝆𝒔(𝒙) =  
𝟏

𝑳
∑ 𝒚𝒍

𝟐(𝒙)𝑳−𝟏
𝒍=𝟎 , we calculate the edge variance 

(the spatially dependent noise power) σs2(x) = N(x) and noise amplitude σs(x) in addition to 
the mean, μs(x). 

Edge variance σs2(x) and noise amplitude σs(x) are calculated from ∑ 𝑦𝑖(𝑥) and  ∑ 𝑦𝑙
2(𝑥).  

𝑁(𝑥) = 𝜎𝑠
2(𝑥) =

1

𝐿
∑ (𝑦𝑙(𝑥) − 𝜇𝑠(𝑥))

2𝐿−1

𝑙=0
=  

1

𝐿
∑ 𝑦𝑙

2(𝑥) − (
1

𝐿
∑ 𝑦𝑙(𝑥)

𝐿−1

𝑙=0
)

2𝐿−1

𝑙=0
= 𝜌𝑠(𝑥) − 𝜇𝑠

2(𝑥) 

Combined mean μx(x) (upper); MTF(f) (lower) 

https://en.wikipedia.org/wiki/Variance#Discrete_random_variable
https://en.wikipedia.org/wiki/Variance#Discrete_random_variable
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Signal and noise results 

The 4× oversampled average edge, μs(x), is shown in 
the upper plot (in the green box, above). Information 
capacities are shown with a yellow background. 

The noise amplitude (voltage), σs(x), is shown on the 
right. The thick black line is the smoothed luminance 
channel.  

σs(x) plot is a new measurement: spatially 
dependent noise was previously difficult to 
observe. 

Calculating information capacity  

from μs(x) and σs(x)  
The next step is to calculate the information capacity, C, typically in units of bits per pixel, by entering 
appropriate values of the signal and noise power, S(f) and N(f), into the Shannon-Hartley equation. 

𝐶 = ∫ log2 (1 +
𝑆(𝑓)

𝑁(𝑓)
) 𝑑𝑓 

𝑊

0

 

S(f) and N(f) are frequency-dependent signal and noise power, and W is the bandwidth, which is always 
equal to 0.5 cycles/pixel (the Nyquist frequency). Frequency-dependence is entered into S(f) using 
MTF(f) (described below). 

This method, which is called the Edge Variance method, is the first of two methods for calculating 
C. The second method, called the Noise Image method, may be slightly more accurate, but only 
suitable for uniformly or minimally processed images; it should not be used for bilateral-filtered 
images (mostly in-camera JPEGs), to be described below. 

Signal power S  
The peak-to-peak signal amplitude at low spatial 
frequencies is the measured difference between 
the means of the light and dark regions of the 
linearized slanted edge V(x) = μs(x). 

𝑉𝑝−𝑝 = ∆𝜇𝑠 = 𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘 =  𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛  

The signal power is the variance of this signal. For 
calculating C, we assume a uniform distribution 
between the limits 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛, which 
maximizes information capacity, noting that the 
variance of the uniform distribution , which is the average signal power at low spatial frequencies, is 

𝜎𝑉
2 = 𝑆𝑎𝑣𝑔(0) = (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)2/12 = 𝑉𝑝−𝑝

2 /12 

The Shannon-Hartley equation uses the average frequency-dependent signal power, Savg(f).  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝 𝑀𝑇𝐹(𝑓))
2

12⁄  

Spatially dependent noise, calculated by the Edge 
Variance method 

Signal amplitude from slanted edge 

https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem#Statement_of_the_theorem
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem#Statement_of_the_theorem
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Signal power S is proportional to the square of the chart contrast if the image has been properly 

linearized. Smax ≤ 1 for linearized images normalized to 1. (It may be less in systems that limit signal 
levels.) 

Noise power N  

Noise power N has the same units as signal power S; hence S/N is dimensionless. 

In examining a great many images, we observe two broad classes of images with very different noise 

properties, visible in σs(x). We call them (1) uniformly/minimally processed and (2) bilateral filtered 
images. The value of noise power, N, used to calculate C, is different for the two image types. 

For “black box” cameras with unknown image processing, the table below shows how to distinguish the 
two image types. If the image processing pipeline is known and understood, the table may not be 
necessary. For most applications, uniformly/minimally processed images are preferred.  

The two image types:  Plots of σs(x) (4× oversampled)  

Bilateral-filtered image Minimally (i.e., uniformly) processed image 

Sharpened near the edge; usually noise-reduced 
elsewhere. Nearly universal in consumer camera 
JPEG images. Image processing appears to 
increase information capacity C, even though 
information is removed. For this reason, it is 

important to use the peak noise σs2(x) (as 
described below) to calculate C. 

Converted from raw with an external raw 
converter, with no sharpening or noise reduction. 

A strong σs(x) peak is visible near the edge 
transition. (This peak below is stronger than 
usual.) 

Little or no peak is visible in σs(x). Noise increases 
on the right because noise power is proportional 
to signal power (the mean number of photons 
striking each pixel) for linear sensors.  

Strongly sharpened images can have a moderate 
amplitude peak, probably because the binning 
algorithm, which bins scan lines based on the 
polynomial fit to the centers (but not the centers 
themselves) is designed to optimize the MTF 
calculation but not the edge noise. 

For calculating C,  
N is the peak noise power, smoothed with a 
rectangular kernel of length PW20/2.  

For calculating C, 

𝑁 = mean(𝜎𝑠
2(𝑥)) for all values of x in the ROI. 
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Noise σs(x) for bilateral-filtered image 

 
Noise σs(x) for uniformly processed image 

For both images, the solid line is the smoothed noise amplitude, σs(x) 

Avoid for evaluating cameras for MV/AI systems. Recommended, if available. 

Texture: is reduced in low contrast portions of the 
image. Bilateral filtering is the reason texture is 
measured with charts such as Spilled Coins and 
Log F-Contrast: measurements can be very 
different from slanted edges. 

Texture: relatively uniform; affected very little by 
image contrast. Charts such as Spilled Coins and 
Log F-Contrast should have MTF similar to the 
slanted-edge.  

 

Bilateral-filtered images are of interest because we often measure “black box” cameras, where we don’t 
know whether bilateral filtering is present, but we want to obtain a reasonable estimate of C.  

Uniformly/minimally processed images should be used for evaluating cameras for use in MV/AI systems,.  

Binning noise is a type of quantization noise that affects the Line Spread Function, but has no effect on 
standard MTF measurements. It is described in Appendix 5, below. 

Bandwidth W  

Bandwidth W is always 0.5 cycles/pixel (the Nyquist frequency). Signals above Nyquist do not contribute 
to the information content; they can reduce it by causing aliasing — spurious low-frequency signals like 

Moiré that can interfere with the true image. Frequency-dependence comes from MTF(f).  

Combining Savg(f), N, and W to obtain C 
Savg(f), N, and W are entered into the Shannon-Hartley equation. 

𝐶 = ∫ log2 (1 +
𝑆𝑎𝑣𝑔(𝑓)

𝑁
)

0.5

0

df ≅ ∑ log2 (1 +
𝑆𝑎𝑣𝑔(𝑖∆𝑓)

𝑁
) ∆𝑓

0.5/∆𝑓

𝑖=0

  

MTF(f) can take a large bite out of C, especially since it is squared in the above equation. Because of its 

frequency-dependence, it is sometimes confused with bandwidth.  

C is measured with relatively low contrast test charts to ensure that the camera is operating in its linear 

region. For most of our work, we use charts with a 4:1 contrast ratio (Michelson contrast =
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥+𝑉𝑚𝑖𝑛
=

0.6), following the ISO 12233 standard [4].  

Since VP-P is directly proportional to chart contrast, we label C according to the contrast ratio: Cn for n:1 

contrast ratio. We use C4 throughout this document.  
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Measurements of C4 from a variety of exposures make it clear that (a) C4 is highly dependent on the 

exposure level, and (b) C4 does not represent the maximum information capacity of the camera. 

Maximum information capacity Cmax ― a more consistent metric 
C4 is strongly dependent on exposure because (1) voltage range ΔV = Vp-p is a strong function of 

exposure, and (2) noise power N is also a function of exposure (derived from image sensor properties). 

We have developed a metric for maximum information capacity: Cmax, that is nearly 

independent of exposure. It is obtained in two steps, shown inside a “green for geeks” box below. 

Calculating maximum information capacity, Cmax 

Step1:  Replace the measured peak-to-peak voltage range Vp-p with the maximum allowable value, 
𝑉𝑝−𝑝_𝑚𝑎𝑥 = 1. This may seem like a simplification, but it works well for most cameras. Referring to the 

section on Signal Power S,  

Step 2:  Replace the measured noise power N with Nmean, the mean of N over the range 0 ≤ V ≤ 1 (where 

1 is the maximum allowable normalized signal voltage V). For linear (non-HDR) image sensors, the general 

equation for noise power N as a function of V is 

𝑁(𝑉) = 𝑘0 + 𝑘1𝑉 

k0 is the coefficient for constant noise (dark current noise, Johnson (electronic) noise, etc.). k1 is the 
coefficient for photon shot noise. They are calculated from noise powers N1 = σ12 and N2 = σ22, which are 
measured along with signal voltages on the darker and lighter sides of the edge transition.  

Assuming  𝑁1 = 𝑘0 + 𝑘1𝑉𝑚𝑖𝑛   and  𝑁2 = 𝑘0 + 𝑘1𝑉𝑚𝑎𝑥  where  𝑁1 < 𝑁2 for linear image sensors, we can 
solve two equations in two unknowns for k0 and k1. 

𝑘0 =
𝑁1𝑉𝑚𝑎𝑥 − 𝑁2𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉1𝑚𝑖𝑛
 ;     𝑘1 =

𝑁2 − 𝑁1

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
 

N closely approximates the noise used in noise calculation method (1) (for minimally processed images 
that don’t have bilateral filtering). But if method (2) (the smoothed peak noise) is used (recommended for 
in-camera JPEGs with bilateral filtering), N is generally larger, and must be modified.  

𝑁 →  𝑘𝑁𝑁,  where  𝑘𝑁 =  𝑁𝑚𝑒𝑡ℎ𝑜𝑑_2/𝑁𝑚𝑒𝑡ℎ𝑜𝑑_1  

In bilateral-filtered images (most JPEGs from consumer cameras), lowpass filtering (for noise reduction) 
may be affect N1 and N2 strongly enough so the equation 𝑁(𝑉) = 𝑘0 + 𝑘1𝑉 does not reliably hold. This can 
adversely affect the accuracy of Cmax. 

The mean noise power Nmean over the range 0 ≤ V ≤ 1 for calculating Cmax is 

𝑁𝑚𝑒𝑎𝑛 =
∫ 𝑁(𝑉) 𝑑𝑣

1

0

∫ 𝑑𝑣
1

0

= ∫ (𝑘0 + 𝑘1𝑉)𝑑𝑣 =
1

0

𝑘0 + 𝑘1/2  

To handle cases where noise is not lighter on the light side of the edge, which can happen with HDR image 
sensors or with weird image processing, use 

𝑁𝑚𝑒𝑎𝑛 = max(𝑁𝑚𝑒𝑎𝑛, 𝑁𝑚𝑖𝑛 , 𝑁𝑚𝑎𝑥) 

Using  𝑁 = 𝑁𝑚𝑒𝑎𝑛 , 𝑉𝑝−𝑝_𝑚𝑎𝑥 = 1   and   𝑆𝑎𝑣𝑔(𝑓) = 𝑀𝑇𝐹(𝑓)2/12 ,  

𝐶𝑚𝑎𝑥 = ∫ log2 (1 +
𝑀𝑇𝐹(𝑓)2

12 𝑁𝑚𝑒𝑎𝑛
)

0.5

0

𝑑𝑓 ≅ ∑ log2 (1 +
𝑀𝑇𝐹(𝑖∆𝑓)2

12 𝑁𝑚𝑒𝑎𝑛
) ∆𝑓

0.5/∆𝑓

𝑖=0
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Because noise in High Dynamic Range (HDR) sensors does not follow the simple equation for linear sensors, 
we recommend giving the image sufficient exposure so the brighter side of the edge is near (but definitely 
below) saturation, then, if the noise does not increase with exposure, use Nmean, as indicated above.  

Cmax is nearly independent of exposure for minimally or uniformly processed images with linear sensors, 
where noise power N is a known function of signal voltage V.  

 

Consistency of Cmax 
We performed a set of analysis on two cameras with a range of exposures (indicated by Vmean). The 

results showed that Cmax was highly consistent with exposure for the raw→TIFF images (which were not 

bilateral-filtered), but less consistent with the bilateral-filtered (JPEG) images. C4 varied as expected. 

Because of the inconsistency, we don’t recommend using bilateral-filtered images where accurate 

information capacity measurements are required— especially when cameras are being evaluated for use 

in MV/AI systems.  

C4 and Cmax for minimally processed raw→TIFF and JPEG images for two cameras 

  
10 MP compact camera 16 MP Micro Four-Thirds camera 

Cmax may be need to be adjusted if the image is incapable of spanning the entire range of Digital 

Numbers (DNs), for example, 0-255 for images with bit depth = 8. Information capacity measurements 

fail if local tone mapping has been applied. 

 

Total information capacity 
Thus far, we have presented information capacity C in bits per pixel. The total information capacity, 

Ctotal, for the entire image takes variations in C over the image into account. 

To obtain Ctotal for auto-detected slanted-edge modules, SFRplus, eSFR ISO, or Checkerboard, select 3D 

& contour plots, then select Edge info Cap C_max (on the right of the Rescharts window, below). The 

mean value of Cmax for the image will also be displayed. For the information capacity plots (C4 and Cmax), 

the zone weights are always [1, 1, 1]. 

𝐶𝑡𝑜𝑡𝑎𝑙 = mean(𝐶) × megapixels. 

https://www.imatest.com/docs/sfrplus_instructions
https://www.imatest.com/docs/sfrplus_instructions
https://www.imatest.com/docs/checkerboard_instructions
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3D plot of information Capacity Cmax over the image surface 

The mean information capacity Cmax is 2.847 bits/pixel. Since the camera has 16 Megapixels, total 

capacity CmaxTotal for the Luminance (Y) channel = 45.44 MB.  

 

Signal averaging 
Signal averaging is a well-known technique that can improve the accuracy and consistency for 

measurements of noisy images for both the Edge Variance and Noise Image methods. 

Extremely noisy images, typically acquired in dim light or at high Exposure Indices, may result in 

inaccurate measurements of MTF and C. Signal averaging, where n identical captures of the same image 

are averaged, is a classic technique for obtaining more consistent measurements by reducing the effect 

of uncorrelated noise. When n images are averaged, the sum of the signal voltage and the sum of the 

noise power (noise voltage2), which is uncorrelated, are both proportional to n. This causes noise 

amplitude to be proportional to √𝑛 , so that SNR increases by √𝑛:  by 3dB whenever n is doubled. To 

obtain correct information capacity measurements when the signal is averaged, the noise power is 

multiplied by n.  

This effect is illustrated below for a camera with a one-inch sensor, which was imperfectly focused, at ISO 

12800. A single image is shown on the left. Note that MTF is rough and has significant high frequency 

noise bumps. For the average of 8 images is shown on the right, information capacity C is slightly 

reduced because MTF is better behaved, i.e., there is less spurious high frequency response. 



N. Koren Image Information Metrics and Applications: Reference, November 2023 p. 12 

   

Single image                                                          n = 8 averaged 

Some key results of the Edge Variance method 
We tested three cameras that produced both raw and JPEG output for information capacity C as a 
function of Exposure Index (ISO speed setting).  

Cameras used in the tests 

1. Panasonic 
Lumix LX5 

2.14 µm pixel pitch. An older (2010) compact 10.1-megapixel camera with a Leica f/2 
zoom lens set to f/4. 

2. Sony A6000 3.88 µm pixel pitch. A 24-megapixel micro four-thirds camera with a 60mm Canon 
macro lens set to f/8 

3. Sony A7Rii 4.5 µm pixel pitch. A 42-megapixel full-frame camera with a Backside-Illuminated 
(BSI) sensor and a 90mm f/2.8 Sony macro lens set to f/8 

 

We captured both JPEG and raw images, which were con-
verted to 24-bit sRGB (encoding gamma ≌ 1/2.2) TIFF 
images (designated as raw→TIFF) with LibRaw, with 
minimal processing (defined as no sharpening, no noise 
reduction, and a simple gamma-encoding function). 
Results for 48-bit Adobe sRGB conversion were nearly 
identical. 

The image on the right, which was analyzed in “Camera 
Information Capacity: A Key Performance Indicator for 
Machine Vision and Artificial Intelligence Systems” [3], 
contains a 50:1 contrast Siemens star and four 4:1 contrast 
slanted edges on the sides. We used the upper-left slanted 

https://www.libraw.org/
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
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edge for most tests. The average background of the chart is close to neutral gray (18% reflectance) to 
ensure a good exposure (exposure compensation may be applied if needed and available). 

The figures below show results for the luminance (Y = 0.2125∙R + 0.7154∙G +0.0721∙B) channel as a 
function of ISO speed (Exposure Index) for the raw→TIFF images (solid lines) and JPEG images (dotted 

lines). For the raw→TIFF images the relationship between ISO speed and C is similar for all three cameras. 

 

C4  4:1 slanted edge 
 

The information capacity for 4:1 contrast edges, C4, 

shows similar trends to Cmax, but since the relatively 
low 4:1 contrast uses only a fraction of the available 

signal level, C4 is lower than Cmax or C measured on 
Siemens stars. It is also highly sensitive to exposure. 

 

 

 

 

Cmax  maximum information capacity 
Cmax is derived from measurements of 4:1 edges. It is 

relatively accurate for minimally or uniformly 

processed (often raw→TIFF) images, and is much 

less sensitive to exposure than C4, making it robust 

and well-suited for comparing the performance of 

different cameras.  

Both C4 and Cmax give the expected results: C is 

higher for the higher quality (larger pixel) sensor, 

and decreases for increased Exposure Index (less 

exposure and more analog gain, resulting in poorer 

SNR). 

 

Sharpening 
Simple sharpening, which has the same effect on the signal and noise response, and therefore does not 

change 𝑆(𝑓)/𝑁(𝑓), would not be expected to have much effect on C. This is indeed the case. 

The two examples below show that (uniform) USM sharpening has little effect on slanted-edge 
information capacity. The two images (originally a minimally processed TIFF) have been strongly USM 
sharpened in the Imatest Image Processing module with Radii = 1 and 2 and Amount = 2. The original 

unsharpened TIFF has C4 = 2.06 and Cmax = 3.82 b/p. 

C4 as a function of Exposure Index (EI) for TIFF and 
JPEG images 

Cmax as a function of Exposure Index (EI) for TIFF and 
JPEG images 

https://www.imatest.com/docs/image-processing/
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TIFF sharpened with Radius = 1, Amount = 2. TIFF sharpened with Radius = 2, Amount = 2. 

 

For R=1, A=2, σ(Location) = 0.11 pixels. For R=2, A=2 (stronger sharpening), σ(Location) = 0.108 
pixels. This is a relatively small increase over the unsharpened σ(Location) = 0.0846 pixels. 

This highlights another benefit of information capacity measurements. Unlike MTF50, they do not 

reward excessive sharpening, which creates “halos” near edges, making the image look sharp in small 

displays, but creating artifacts that degrade image appearance on large displays [9]. They also have a bad 

reputation for machine vision applications.  

 

Edge location variance (or standard deviation) 
An additional result can be derived from the Edge Variance method: The edge location variance (or 

standard deviation), σ2(Location) or σ(Location).  

Edges are important because they are often required to distinguish an object. For example, athe only 

way to distinguish a gray vehicle from a gray concrete background is with the edges. 

For signal voltage V(x), the edge is defined as the location x where the Line Spread Function LSF(x) = 

dV(x)/dx (in units of 1/pixels) has its peak value. The standard deviation of the edge location is  

𝜎(Location) =  
maximum 𝜎𝑥(𝑥)

maximum 𝑑𝑉(𝑥)/𝑑𝑥
 ≅  

𝜎𝑥(𝑥) at peak 𝐿𝑆𝐹(𝑥)

peak 𝐿𝑆𝐹(𝑥)
       in units of pixels 

The actual location of an edge is affected by interference from neighboring edges (mostly the closest 

edge) as well as σ(Location). When edges are close together (small w), interference causes edge 

amplitudes decrease, which increases sigma, and it also causes edge locations to shift. Displays of LSF 

amplitude and shift versus spacing are shown below for the image used for Signal and noise result 
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(above), and the same image moderately sharpened with Radius = 1 and Amount = 2, in Sharpening 

(above). σ(Location) is not a major metric. SNRi and Edge SNRi are more useful. 

   

                        TIFF unsharpened                                             Sharpened with Radius = 1, Amount = 2. 

The difference between the two results is not large. At a pixel spacing of 1 (labeled 100 on the x-axis), the 

difference between ΔLSFmaximum + σ(Location) and ΔLSFminimum - σ(Location) is 0.36+0.31 = 0.67 for the 

TIFF unsharpened image and 0.32+0.17 = 0.49 for the R1A2 sharpened image: a modest improvement. 

For a strongly oversharpened (R2A5) image, σ(Location) increases to 0.125, but ΔLSFtotal @ pixel spacing 

1 = 0.07+0.34 = 0.43. This improvement was surprising since the edge has a large peak. At higher ISO 

speeds, σ(Location) would have been much larger and there would be less improvement with 

sharpening. We will present better performance metrics, SNRi and Edge SNRi, below. 

 

Summary of the Edge Variance method 
• The Edge Variance method is the first of two methods for calculating information capacity, C, 

from slanted edges. 

• It has a limited set of results. There are many more in the Noise Image method. 

o Information capacities C4 and Cmax and σ(Location), 

o A plot of spatially dependent noise power σs2(x) or amplitude σs(x), which can be 

useful for determining if the image has been bilateral-filtered. 

• Produces a useful approximate measurement of C for bilateral-filtered images, but more 

accurate results are obtained from uniformly/minimally processed images, which should always 

be used when a camera is being evaluated for use in MV/AI systems. 

• Results are easy to obtain, even though the algorithms behind them can be complex. For the 

most part, Imatest users don’t need to be concerned about the calculation method. 
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The Noise Image method of calculating information capacity-related 

metrics 
The Noise Image method is the second of two methods for calculating information capacity and related 

metrics. It was developed shortly after the Edge Variance method, and it offers a particularly rich set of 

measurements. 

This method involves inverting the ISO 12233 binning procedure. Noting that the 4× oversampled edge 

was created by interleaving the contents of 4 bins, each of which contains an averaged (noise-reduced) 

signal derived from the original image, we apply an inverse of the binning algorithm to set the contents 

of each scan line to its corresponding interleave (Inverse binned… ROI, below). Since the inverse-binned 

image is a nearly noiseless replica of the original image, we can create a noise image by subtracting the 

inverse-binned image from the original image (which must be corrected for illumination nonuniformity in 

the direction of the edge).  

The three images are shown below. The noise image (below-right), which has a mean value of 0, has 

been lightened and contrast-boosted for display. The other images are displayed with gamma-correction. 

         

(1) Original ROI                            (2) Inverse-binned /                  (3) Noise image ROI 
de-interleaved / reverse-projected 

These images allow several additional image quality parameters to be calculated, including Noise Power 

Spectrum (NPS) and Noise Equivalent Quanta (NEQ), well-known in medical imaging systems, and 

described in an excellent review paper by Ian Cunningham and Rodney Shaw [10]. These measurements 

are not well-known outside of medical imaging, in part because they have been difficult to measure. 

An alternative information capacity measurement, CNEQ, derived from NEQ, is described below. 

 

Displaying the results  
The key results are in the Information-related, NEQ, SNRi,… plot of the Imatest Rescharts window (used 

to run SFRplus, eSFR ISO, SFRreg, and Checkerboard interactively).  

https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#method_noise_image
https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
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This plot has numerous display options. It displays two results: one at the top and one at the bottom. 

The contents of the upper and lower plots are selected In the Display area on the right of the Rescharts 

window, shown in the middle column of the table below. 

Upper or Lower plot Display settings Lower plot-only 

Noise Voltage Spectrum 
Noise Power Spectrum (NPS)  
Noise Equivalent Quanta (NEQ) 
MTF 
Edge linearized unnormalized 
Line Spread Function (LSF) 
Edge noise voltage 
Noise autocorrelation 
SNRi square w x w 
SNRi rectangle w x 4w 
SNRi square per pixel2 
SNRi rectangle per pixel2 
LSF Doublet shift 
LSF Doublet amplitude 
LSF doublet S/N energy 
Edge SNRi square w x w 
Edge SNRi rectangle w x 4w 
Edge SNRi 1D doublet 
Object matched filter 
Edge matched filter 

 

Original image crop  
Unbinned image crop  
      (Reverse-projected; low noise) 
Noise image crop  (Original – Noise) 
Results summary (Shown above) 
Square visibility image 
Square visibility – LARGE 

 

  

 

Here is an example, with Noise Power Spectrum (NPS) displayed on the top and Results summary 

displayed on the bottom. 

https://www.imatest.com/docs/information-slanted-edges-instructions/#upperplots
https://www.imatest.com/docs/information-slanted-edges-instructions/#lowerplots
https://www.imatest.com/docs/information-slanted-edges-instructions/#mtf
https://www.imatest.com/docs/information-slanted-edges-instructions/#edgelin
https://www.imatest.com/docs/information-slanted-edges-instructions/#snri
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Noise Power Spectrum (NPS) displayed on the top and Results summary  

(showing the two different information capacity calculations) on the bottom. 

 

Noise Voltage or Power Spectrum (NPS) 
NPS (upper plot above) can be displayed 

with a logarithmic x-axis (above) or a linear 

x-axis (on the right; selectable by the Log x-

axis checkbox, above). The Noise Power and 

Voltage Spectrum plots have the same 

shape: only the y-axis labels are different. 

The 1D Noise Power or Voltage spectrum is 

derived from a 2D Fourier transform (FFT) of 

the noise image. The initial 2D FFT has zero 

frequency at the image center. The image is 

divided into several annular regions, and the 

average noise power is found for each region. NPS is used for the NEQ and SNRi calculations.  

Because this procedure does not maintain the invariance in energy between the spatial and frequency 

domain implied by Parseval’s theorem, ∬ 𝜎2(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =  ∬ 𝑁𝑃𝑆(𝑣𝑥, 𝑣𝑥) 𝑑𝑣𝑥 𝑑𝑣𝑥, where v is 

frequency, we must apply a correction to the NPS. 

Noise Power Spectrum (NPS) 

https://en.wikipedia.org/wiki/Parseval%27s_theorem
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Noise autocorrelation 
This plot is used to examine the hypothesis that 

noise autocorrelation (the inverse Fourier transform 

(IFT) of the NPS) indicates the amount of electrical 

crosstalk of image sensor when the effects of 

demosaicing and fixed-pattern noise are removed 

and the primary noise source is photon shot noise.  

The idea behind the hypothesis is that light incident 

on the sensor is uncorrelated, so that if there were 

no crosstalk, the noise would be white.  

This image used for the upper plot was white-

balanced. The curve of |IFT(NPS)| is based on the 

author’s understanding of the Wiener-Khinchin 

theorem.  

The image in the lower right was not white-balanced. 

This increases the red channel autocorrelation 

distance, as expected.  

A similar autocorrelation plot can also be obtained 

from a flat field region in the Image Statics module. Illumination nonuniformity has been corrected to decrease the 

(spurious) autocorrelation at large distances. 

 

Noise Equivalent Quanta (NEQ) 
NEQ is a figure of merit used in medical imaging [5], but is unfamiliar in general imaging. It is described 

in a 2016 paper by Brian Keelan and in an earlier paper by Cunningham and Shaw [10]. Essentially, it is a 

frequency-dependent Signal-to-Noise (power) Ratio, in contrast to MTF, which is signal amplitude 

response-only.  

Units are the equivalent number of detected quanta that would generate the measured SNR when 

photon shot noise is dominant.  

𝑁𝐸𝑄(𝑓) =
𝜇2𝑀𝑇𝐹2(𝑓)

𝑁𝑃𝑆(𝑓)
 

where the mean linear signal, μ, can be defined in either of two ways, depending on how NEQ is to be 

interpreted.  

In the standard definition of NEQ, where NPS is dominated by photon shot noise, 𝜇2 = 𝑉𝑚𝑒𝑎𝑛
2 = �̅�2, 

where �̅� is the mean count of the detected quanta. But because noise is uncorrelated, 𝑁𝑃𝑆 = 𝜇 = �̅�. 

Therefore, NEQ is proportional to the count of detected quanta, �̅�. For example, NEQ = 200 corresponds 

to a mean of �̅� = 200 detected quanta per pixel (assuming photon shot noise is dominant).  

The above equation, 𝜇 = 𝑉𝑚𝑒𝑎𝑛 = �̅�, is appropriate if NEQ is to be used for calculating Detective 

Quantum Efficiency), 𝐷𝑄𝐸(𝑓) = 𝑁𝐸𝑄(𝑓)/�̅�𝑖, where �̅�𝑖 is the mean number of quanta incident on each 

pixel. Measuring DQE requires a separate (and very exacting) measurement of �̅�𝑖. It is not yet in Imatest. 

Noise autocorrelation 

https://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem
https://www.imatest.com/support/docs/23-1/image-statistics/
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
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Getting familiar with the meaning and use of 

NEQ may take some time. Characterization of 

imaging performance in differential phase 

contrast CT compared with the conventional 

CT: Spectrum of noise equivalent quanta 

NEQ(k) [17] by Tang et. al. is an excellent 

example of how NEQ is used in medical 

imaging. 

The NEQ plot is somewhat rough because of 

the relatively small size of the slanted-edge 

ROIs (Regions of interest). It can be improved 

(made smoother) using Signal Averaging. 

 

Information capacity from NEQ, CNEQ 

A variant of NEQ, NEQinfo(f) (not plotted), calculated using 𝜇 = 𝑉𝑃−𝑃/√12 (to be consistent with the 

Edge Variance calculation), is used to calculate information capacity, CNEQ. 

𝐶𝑁𝐸𝑄 = ∫ log2(1 + 𝑁𝐸𝑄𝑖𝑛𝑓𝑜(𝑓)) 𝑑𝑓 =  ∫ log2 (1 +
𝜇2𝑀𝑇𝐹2(𝑓)

𝑁𝑃𝑆(𝑓)
) 𝑑𝑓

0.5

0

 
𝑊

0

 

where bandwidth W = fNyq = 0.5 Cycles/Pixel, is the camera’s Nyquist frequency. [Author’s note: I thought 

I’d discovered this connection, but it’s in papers on PET scanners and Digital Mammography by Christos Michail et. 

al. [6],[7]. Not papers anybody outside medical imaging is like encounter.] 

 

The key results, C4(NEQ) and Cmax(NEQ), are 

included in the Results summary. They are slightly 

different from the Edge Variance results, most likely 

because the calculated Noise Power Spectrum, 

NPS(f), is used. (The Edge Variance calculation 

assumes constant NPS, i.e., white noise.  

 

Ideal Observer SNR (SNRi)    
SNRi is a measure of the detectability of objects, described in ICRU Report 54 [16] and in papers by Paul 

Kane [14] and Orit Skorka and Paul Kane [15]. The two-dimensional equation in [15] gives the best 

results. 

𝑆𝑁𝑅𝑖2 = ∬ (
|𝐺(𝜈𝑥 , 𝜈𝑦)|

2
 𝑀𝑇𝐹2(𝜈𝑥 , 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦)
) 𝑑𝜈𝑥  𝑑𝜈𝑦  

Noise Equivalent Quanta (NEQ) 

Results summary 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
https://www.icru.org/report/medical-imaging-the-assessment-of-image-quality-report-54/
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
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𝐺(𝜈𝑥 , 𝜈𝑦) is the Fourier transform of the 

rectangular object to be detected, defined 

below.  

MTF(ν) and NPS(ν) are defined in one 

dimension. Spatial frequency 𝜈 =

√𝜈𝑥
2 + 𝜈𝑦

2 has units of Cycles/Pixel. 

Objects to be detected are typically 

rectangles of dimensions w × kw, where k = 

1 for a square or 4 for a 1:4 aspect ratio 

rectangle.Amplitude, VP−P, is typically 

obtained from a chart with a 4:1 contrast ratio.  

𝑔(𝑥, 𝑦) = 𝑉𝑃−𝑃 ⋅ rect (
𝑥

𝑤
) ⋅ rect (

𝑦

𝑘𝑤
) 

where rect(x/w) = 1 for  -w/2 < x < w/2 ; 0 otherwise.  

G(νx,νy) is the Fourier transform of the object, g(x,y), 

expressed in two dimensions. 

𝐺(𝜈𝑥, 𝜈𝑦) = 𝑘𝑤2 𝑉𝑃−𝑃

sin(𝜋𝑤𝜈𝑥)

𝜋𝑤𝜈𝑥
 
sin(𝜋𝑘𝑤𝜈𝑦)

𝜋𝑘𝑤𝜈𝑦
=  𝑉𝑃−𝑃 𝐺𝑟𝑒𝑐𝑡(𝜈𝑥 , 𝜈𝑦) 

where 𝐺𝑟𝑒𝑐𝑡 = 𝑤 sinc(𝜔𝑤 2⁄ ) = 𝑤 sinc(𝜋𝑤𝑣) is the Fourier transform of rect(x/w) for frequency v. 

Note that G has units of 1/v2, and since v has units of cycles/pixel, G has units of pixels2. 

SNRi2 is calculated numerically by creating a two-dimensional array of frequencies (0 to 0.5 c/p in 51 

steps) with νx on the x-axis νy on the y-axis, filled with frequency 𝜈 = √𝜈𝑥
2 + 𝜈𝑦

2. These frequencies are 

used to create a 2D array that can be numerically summed [15].  

𝑆𝑁𝑅𝑖2 = Δ𝜈𝑥 Δ𝜈𝑦  ∑ ∑
𝑀𝑇𝐹2(𝑖, 𝑗) 𝐺2(𝑖, 𝑗)

𝑁𝑃𝑆(𝑖, 𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1
  

SNRi is displayed for each color channel for w = 0.5, 0.7, 1, 1.4, 2, 3, 4, 7, 10, 14, 20. 

Note that like C4, 𝑆𝑁𝑅𝑖 is strongly affected by exposure and chart contrast. But unlike C, SNRi is affected 

by image signal processing (sharpening, etc.).  

Although SNRi is a powerful measurement, we currently prefer a closely related measurement, Edge 

SNRi, for determining the performance of pre-filtering (Image Signal Processing performed before 

sending the image to the Object Recognition/Machine Vision/AI block). 

SNRI2 is equivalent to the total (integrated) Signal/Noise energy of the object in the spatial domain. 

This is best illustrated in one dimension, using Parseval’s theorem. 

∫ |𝑟(𝑥)|2𝑑𝑥 
∞

−∞

=  
1

2𝜋
∫ |𝑅(𝜔)|2𝑑𝜔 = ∫ |𝑅(2𝜋𝑓)|2𝑑𝑓 

∞

−∞

∞

−∞

 

SNRI curves, Micro 4/3 camera, ISO 100 

SNRi for sharp, low-noise (ISO 100) image 

https://en.wikipedia.org/wiki/Parseval%27s_theorem
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where  

𝑟(𝑥) = (𝑉(𝑥) − 𝑉(𝑥 − 𝑤))/𝜎   and   𝑅(𝑓) =
𝐺(𝑓) 𝑀𝑇𝐹(𝑓)

√𝑁𝑃𝑆(𝑓)
  

SNRi displayed in dB per pixel2 
Because standard SNRi plots can be difficult to 

read (in part because SNRi has units of pixels2), 

we have added a plot of SNRi in dB per pixel2, 

shown on the right. It is somewhat easier to 

read than the standard SNRi plot, but it is more 

of a relative measurement—for evaluating 

changes from image processing. 

Tip— Click on Data cursor in the dropdown 

below the thumbnail on the upper right to get a 

reading of the actual value. 

Object visibility    
The goal of SNRi measurements is to predict object visibility for small, low contrast squares or 4:1 

rectangles. The SNRi prediction begs for visual confirmation. 

We have developed a display for Imatest that does this with real slanted-edge images. Despite the 

trickery, the data is directly from the acquired image. 

  
Low noise ISO 100 (left)                                                  Noisy ISO 12800 (right) 

MTF50 = 0.214 c/p;  Cmax = 4.24 b/p;                                      MTF50 = 0.140 c/p;  Cmax = 1.37 b/p. 

We show two images, above: one for a relatively low noise image and one for a noisy image (both from a 

camera with a Micro Four-Thirds sensor, at ISO 100 and 12800, respectively). The sides of the squares 

are w = 1, 2, 3, 4, 7, 10, 14, and 20 pixels. The original chart has a 4:1 contrast ratio (light/dark = 4), 

SNRI in dB per pixel2 for low-noise (ISO 100) image 
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equivalent to a Michelson contrast, 𝐶𝑀𝑖𝑐ℎ =
light-dark

light+dark
= 0.6. The outer squares have CMich = 0.6. The 

middle and inner squares have CMich = 0.3 and 0.15, respectively. 

How to use these images — Inconspicuous magenta bars are designed to help finding the small squares, 

which are hard to see. The yellow numbers are the square widths in pixels. The SNRi curves (initially, at 

least) represent the chart contrast — with 4:1 (the ISO 12233 standard [4]) strongly recommended. The 

outer patches correspond to the SNRi curves, where, according to the Rose model [10], SNRi of 5 (14 

dB) should correspond to the threshold of visibility.  

The SNRi curve on the right is for the noisy 

ISO 12800 image on the right, above. The w = 

1 squares are invisible; the w = 2 and 3 

squares are only marginally visible, and w = 4 

squares are clearly visible. In the plot, the Y 

(luminance) channel SNRi at w = 2 is 9 dB; it 

reaches 11 dB for w = 3; close to the 

expectation that the threshold of visibility is 

around 14 dB. 

 

Only original pixels were used in these two images of squares, but we used a little smoke and mirrors to 

make the squares that have the same blur as the device under test. Feel free to skip this explanation. 

How the squares were made 
1. Expand the image if needed (if the original is less than 170 pixels wide) to make room for all the squares by 

adding mirrored versions of image to the left and right to the sides of the image. If needed, add a cropped 
vertical mirrored image to the bottom.  

2. Create a (horizontal) mirror of the full image. This is the “mirror” part. 
3. Create a mask consisting of ideal w×w squares. The background is 0 and the squares are 1. The sides are 

sharp. 
4. Blur the squares with the MATLAB filter2 function. This is the “smoke” part. Determining the blur kernel was 

challenging. We found that we couldn’t get good results by just using the 1D Line Spread function (LSF) in 2D. 
A more complex transformation was required.  

5. Linearize the two images (remove the gamma encoding). 
6. Combine them using the mask, keeping the original image where the mask = 0, using the mirrored image 

where the mask = 1, and blending them elsewhere.  

7. Reapply the gamma encoding. 

 

SNRi for noisy ISO 12800 image (above, right) 

https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
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Edge Signal-to-Noise Ratio (Edge SNRi)    
Edge SNRi is an edge-based measure of the detectability 

of the edges of small objects, similar to SNRi, described 

above and in papers by Paul Kane [14] and Orit Skorka 

and Paul Kane [15].  

𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2 = ∬ (
 |𝐻(𝜈𝑥 , 𝜈𝑦)|

2
 𝑀𝑇𝐹2(𝜈𝑥 , 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦)
) 𝑑𝜈𝑥  𝑑𝜈𝑦 

H(νx,νy) is the Fourier transform of the edges (the 

gradient) of the object to be detected; defined below.  

For a rectangle of dimensions w × kw, the function is the 

derivative, h(x, y), of the rectangle, g(x, y), that 

describes the object. 

VP−P is typically obtained from a chart with a 4:1 contrast 

ratio.  

 

ℎ(𝑥, 𝑦) = 𝑉𝑃−𝑃 ∙ 𝑑 [rect (
𝑥

𝑤
)] /𝑑𝑥 ∙ 𝑑 [rect (

𝑦

𝑘𝑤
)] /𝑑𝑦 =  𝑉𝑃−𝑃 ∙ 𝐼𝐼 (

𝑥

𝑤
) ∙ 𝐼𝐼 (

𝑦

𝑘𝑤
) 

where II(x/w) = d(rect(x/w)/dx is called the “odd impulse 

pair,” consisting of a pair of Dirac delta functions of 

opposite polarity separated by the object width w. It is 

shown on the right. 

H(νx,νy) is the Fourier transform of the edges of the object to be detected, equivalent to 2πv G(vx,vy) for 

frequency v. Expressed in two dimensions, 

𝐻(𝜈𝑥, 𝜈𝑦) = 2 𝑉𝑃−𝑃 sin(𝜋𝑤𝜈𝑥) sin(𝜋𝑘𝑤𝜈𝑦) 

Edge SNRi2 is calculated using a similar equation to standard SNRi2.  

𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2 = Δ𝜈𝑥 Δ𝜈𝑦  ∑ ∑
𝑀𝑇𝐹2(𝑖, 𝑗) 𝐻2(𝑖, 𝑗)

𝑁𝑃𝑆(𝑖, 𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1
 

Edge SNRi is displayed for each color channel for w = 0.5, 0.7, 1, 1.4, 2, 3, 4, 7, 10, 14, 20. 

Unlike C, Edge SNRi is affected by signal processing (sharpening, etc.), making it useful for evaluating 

pre-filtering (ISP filtering applied prior to the object recognition/machine learning/AI blocks).  

Line Spread Function (LSF) doublet results 
Edge SNRi is based on pairs of Line Spread Functions of opposite polarity called LSF doublets, r(x), which 

are also used in several key calculations. 

𝑟(𝑥) = (𝐿𝑆𝐹(𝑥) − 𝐿𝑆𝐹(𝑥 − 𝑤))/𝜎   and   𝑅(𝑣) =
𝐻(𝑣) 𝑀𝑇𝐹(𝑣)

√𝑁𝑃𝑆(𝑣)
  

SNRI curve (Upper), Edge SNRi curve (lower), 
1” sensor raw-converted with minimal processing, ISO 200 

https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
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LSF Doublets, r(x), are illustrated below for w = 5.0 and 0.5 pixels. 

  
LSF Doublet. w = 5.0 pixels. LSF Doublet. w = 0.5 pixels. Amplitude is 1/3 as large as for 

w = 5.0 pixels. 

As spacing w decreases,  

• the peaks are closer (but shifted more from their original locations), and  

• amplitude decreases. These are plotted below.  

  
LSF Doublet shift as a function of spacing w LSF Doublet amplitudes as a function of spacing w 

 

Edge SNRi in frequency and spatial domain 
As a result of Parseval’s theorem, Edge SNRI2, which is defined in frequency domain, is equivalent to 

the total (integrated) Line Spread Function doublet divided by Noise energy in the spatial domain.  

This is best illustrated in one dimension. For LSF doublets in both domains,  

∫ |𝑟(𝑥)|2𝑑𝑥 
∞

−∞

=  
1

2𝜋
∫ |𝑅(𝜔)|2𝑑𝜔 = ∫ |𝑅(2𝜋𝑣)|2𝑑𝑣 ≅ 2 ∫ |𝑅(2𝜋𝑣)|2𝑑𝑣 

𝑓𝑁𝑦𝑞

0

∞

−∞

∞

−∞

 

Because the integrands are energy, dB = 10 log10. 

The upper plots below are the spatial domain result, ∫ |𝑟(𝑥)|2𝑑𝑥 =  ∫ |𝐿𝑆𝐹(𝑥)/𝑛𝑜𝑖𝑠𝑒|2𝑑𝑥 
∞

−∞
 

∞

−∞
as a 

function of doublet spacing (feature size w).  

The lower plots are the frequency domain results, 𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖 =  2 ∫ |𝐵(2𝜋𝑓)|2𝑑𝑓 
𝑓𝑁𝑦𝑞

0
as a function of 

w.  
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There is slightly more discrepancy between the lower and upper plots for the real image (on the right) 

because noise is not white, as assumed by the spatial domain calculation. In the real image on the right, 

the Noise Spectrum (Power or Voltage) falls off with frequency. 

     

Simulated image with white noise                                         Real image with spectral noise 
Comparison of spatial and frequency-domain Edge SNRi measurements 

 

Table of key measurements from the Noise Image method 
 

Measurement Description 

Noise Power Spectrum, NPS(f) 
(or Noise Voltage Spectrum) 

Used in NEQ and SNRi calculations. NPS was implicitly assumed to be constant 

(white noise) in the Edge Variance method. 

Noise autocorrelation  
The inverse Fourier transform of the Noise Voltage Spectrum. May be related to 

sensor electrical crosstalk. An experimental measurement. 

Noise Equivalent Quanta, 

NEQ(f) and NEQinfo(f)  

A measure of the frequency-dependent signal-to-noise ratio (SNR).  

𝑁𝐸𝑄(𝑓) = 𝜇2 𝑀𝑇𝐹(𝑓)2/𝑁𝑃𝑆(𝑓), where μ = Vmean is relatively unfamiliar 

outside of medical radiology. NEQ(f) is equivalent to the number of quanta 

detected by the sensor when photon shot noise is dominant. It can be used for 

calculating Digital Quantum Efficiency (DQE), when the density of quanta 

reaching the image sensor is known. 𝑁𝐸𝑄𝑖𝑛𝑓𝑜(𝑓), derived from 𝜇 =

𝑉𝑃−𝑃/√12 , is used to calculate information capacity CNEQ. 
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Information capacities 

C4(NEQ) and Cmax(NEQ)  

correspond to C4 and Cmax from the Edge Variance method. Derived 

from  𝑁𝐸𝑄𝑖𝑛𝑓𝑜(𝑓). They are close, but not identical. 

Ideal observer Signal-to-Noise 

Ratio, SNRi  

From Kane [14] and Skorka and Kane [15], “The Ideal Observer is a Bayesian 

decision maker that maximizes the statistical precision of a hypothesis test with 

two possible outcomes.” SNRi is a metric of the detectability of small objects 

(squares or rectangles), typically of low contrast. SNRI2 is equivalent to the total 

(integrated) Signal/Noise energy of the object in the spatial domain. 

Object visibility 
Images of low contrast squares of various sizes: a visual indicator of object 

visibility. Correlates with SNRi.  

Edge SNRi 

Similar to SNRi, except that it is derived from the object edges, i.e., Line Spread 

Function doublets (pairs of LSFs representing the edges of the object). Edge 

SNRI2 is equivalent to the total (integrated) Signal/Noise energy of the LSF 

doublet Signal/Noise energy in the spatial domain. 

 

Summary of the Noise Image method 
• The Noise Image method is the second of two methods for calculating information capacity, C, 

from slanted edges. It uses a 2D image of the noise to calculate several image quality metrics. 

• It only gives reliable results with uniformly or minimally processed images, which can be 

distinguished from bilateral-filtered images by the absence of a peak in σs2(x) or σs(x) displays. 

• It produces a rich set of related results, including Noise Power Spectrum (NPS), Ideal observer 

SNR (SNRi), Edge SNRi, Noise Equivalent Quanta (NEQ), and a second information capacity 

measurement, derived from NEQ, that can be compared with the Edge Variance results (they are 

slightly more accurate because NPS(f) is not assumed to be constant).  

 

Image Signal Processing (ISP) 
Several recent papers [18],[19],[20] state that appropriate image processing prior to Object Recognition, 

Machine Vision or AI algorithms may improve system performance (accuracy, speed, and power 

consumption). Because information capacity changes relatively little with Image Signal Processing— at 

least with ISP that does not remove information, such as Unsharp Mask (USM) sharpening— it provides 

little guidance about how to design optimal image processing. 

Image signal processing algorithms can be designed to optimize a specific task, for example, the 

detection of an object of a specific size, often a small rectangle, or its edges. In practice, ISP needs to 

perform well over a range of tasks: detecting objects of edges greater than a minimum size and limiting 

interference from neighboring objects. 

SNRi has some drawbacks as an object detection metric. Plots of SNRi are challenging to interpret 

because SNRi increases with feature size. And there is the problem of object color. What If the object has 

the same color as the background (e.g., gray cars in front of gray concrete)? In such cases it is the edge 

that matters. Because of these shortcomings, we prefer Edge SNRi. 

https://journals.sagepub.com/doi/abs/10.1093/jicru_os28.1.50?journalCode=crub
https://journals.sagepub.com/doi/abs/10.1093/jicru_os28.1.50?journalCode=crub


N. Koren Image Information Metrics and Applications: Reference, November 2023 p. 28 

Pre-filtering: effects of sharpening and lowpass filtering 
Starting with an unsharpened image, we applied sharpening and/or lowpass filtering (blurring) using the 

Imatest Image Processing module. 

We show the entire Imatest Rescharts interactive window displaying the Line Spread Function and Edge 

SNRi for a w×4w rectangle (as a function of the narrower edge, w). We selected smoothed peak noise 

for the calculations, which gives lower performance than the mean noise, but should be more 

representative of Line Spread Function edge performance. Edge SNRi is 5.3 dB for large w; -1 at w = 1. 

 

Results with no filtering. LSF (top), Edge SNRi (bottom) 
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The first filter is USM (Unsharp Mask) sharpened with 

Radius = 2 and Amount = 3. This is moderately strong 

sharpening. R = 2 was chosen because the original image 

is not extremely sharp: R = 1 might be better for sharper 

image (with some MTF remaining at the Nyquist 

frequency). 

Edge SNRi (4.7 dB for large w; -1.5 at w = 1) is worse 

than for the unsharpened image at all spacings. The 

reason is that sharpening increases noise, σ(location) is 

significantly larger (0.219 pixels) than for the 

unsharpened image (0.13 pixels) 

As expected for sharpening, PW50 (full width half 

maximum) is reduced and MTF50 is increased. 

Information capacity C4 and Cmax is slightly lower (due to 

numerical calculations).  

This result agrees with opinions I’ve heard (alas, I don’t 

have good references) ― that sharpening does not 

improve performance of machine vision systems. But it is 

not the end of the story. 

The second filter was USM sharpened (with the same 

values: Radius = 2 and Amount = 3) with an added 

Gaussian lowpass filter with σ = 1 pixel (determined by 

old-fashioned trial and error). The filter was created with 

the Imatest Image Processing module, but an external 

program could have been used.  

Good news! Edge SNRi (9.8 dB for large w; 6.1 at w = 1) 

was better than either the unfiltered or USM-only 

filtered image. This is an extremely significant result. It 

shows that correctly chosen filtering can improve the 

performance of a key task (edge detection) before the 

image is sent to the object recognition/machine 

vision/AI processing block.  

 

The key results (Edge SNRI and SNRi in dB per pixel2) for a w×4w object are shown in the Table. 

Filter MTF50 
C/P 

Edge SNRi 

w = 1 

Edge SNRi 

large w 

SNRi dB/pxl2  

w = 1 

SNRi dB/pxl2  

w = 5 

Cmax 

(NEQ) 
σ(loc.) 
pixels 

None 0.158 -0.52 5.49 21.7 28.3 2.94 0.13 

USM R2A3 0.294 -1.5 4.7 20.7 26.5 2.73 0.219 

USM R2A3 + 
σ = 1 Gaussian LPF 

0.243 6.1 9.8 24.7 30.0 3.44 0.105 

Results with R2A3 USM sharpening.  
LSF (top), Edge SNRi (bottom) 

Results with R2A3 + Gaussian USM sharpening. 
 LSF (top), Edge SNRi (bottom) 
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σ = 1 Gaussian LPF 0.122 1.56 8.5 24.9 33.7 2.72 0.89 
USM R2A5 (extreme 
oversharpening) 

0.357 -6.8 -1.1 14.7 20.1 2.02 0.26 

 

This important result shows that filtering can improve object detection, 

indicating that it may be able to improve Object Recognition, Machine Vision, 

and Artificial Intelligence system performance. 

 Edge SNRi appears to be slightly more sensitive than SNRi dB per pixel2 (showing greater differences for 

different filtering). Sharpening + lowpass filtering gives the 

best result. Results are well-correlated with edge location 

noise, σ(location). 

The excessively oversharpened USM R2A5 image, plotted 

on the right is illustrated because it’s all too common, and 

we do our best to discourage it: it is a cheap way of 

improving MTF50 measurements and image appearance on 

tiny displays (phones), but it creates “halos” (peaks near 

edges) that degrade appearance in large displays. The poor 

Edge SNRi and other results are additional reasons to avoid 

this type of image processing, as have described in [9]. 

 

Matched filter 
In the above section, we discussed a applying a filter ℱ(𝑓) 

to optimize either SNRi or Edge SNRi.  

An optimum filter can be determined if a task (for 

example, detecting an edge of a certain size) is defined. 

Such a filter is called a matched filter, ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓), which has the same frequency spectrum as the 

measurement used to derive it. For our edge and object detection tasks,  

ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓)  =  
|𝑃(𝑓)| 𝑀𝑇𝐹(𝑓) 

√𝑁𝑃𝑆(𝑓)
 

P(f) is either G(f) (for SNRi) or H(f) (for Edge SNRi). Precise matched filters (for the above equation) are 

difficult to implement exactly, and rarely needed for at least two reasons. 

• They don’t have to be exact to perform well.  

• Real world imaging systems perform a multitude of tasks: detecting objects and edges of varying 

sizes and colors. Since large objects are usually detected well, it makes sense to design ISP to 

perform well with small objects (or edges). 

In the example below, there is some resemblance between the matched filter for edge detection with w 

= 2 pixels and the sharpening + lowpass filter used above, also shown in Appendix 3. Both the matched 

filter and the USM+LPF Image Processing filter have response peaks around 0.15 Cycles/Pixel. 

Edge/MTF plot for extremely oversharpened image. 
MTF50 correlates poorly with performance. 
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Fortunately, filters don’t have to be exact to perform well. The matched filter response can be used for 

guide for designing the filter.  

 

 
USM + LPF filter from Image Processing 

We have gone far enough down this deep and potentially fruitful rabbit hole. We were fortunate that the 

filter parameters we found by trial-and-error were reasonably close to the matched filter calculated from 

the image properties (sharpness and noise) and that they enhanced edge and object detection.  

Units and Exposure sensitivity 
NEQ(f) is dimensionless because μ2MTF(f)2 has the same units as NPS(f). 

SNRi has units of pixels2 because G has units of pixels2 = 

1/v2 (for frequency v), where v has units of cycles/pixel. 

This is why SNRi increases by about 6 dB (4× energy) for 

every doubling of feature size w.  

Edge SNRi and SNRi displayed in dB per pixel2 are both 

dimensionless, making them somewhat easier to work 

with than SNRi. 

Like C4, Edge SNRi and other noise image metrics vary 

with exposure. The plot on the right shows Edge SNRi 

vs. exposure for the same camera data used to plot C4 

and Cmax vs. exposure, above.   

Standard exposure — Ultimately, a standard exposure will 

be needed for comparing cameras (and will need to be in the nascent ISO 23654 standard). For images 

encoded with gamma ≈ 0.454 = 1/2.2 (sRGB, etc.), Vmax ≈ 0.5 is appropriate. For linear (gamma = 1) 

images, the equivalent exposure results in Vmax = 0.52.2 = 0.22 (where Vmax is normalized to a maximum of 

1). 

Matched filter for Edge Detection 

Edge SNRi vs. maximum ROI pixel level Vmax 
for w = 1 and 2. 

https://www.imatest.com/solutions/information-capacity/#iso
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Summary 
We have developed a powerful toolkit of new measurements — Figures of 

Merit for imaging systems that combine sharpness and noise — that are 

especially applicable to Object Recognition, Machine Vision, and Artificial 

Intelligence systems. The key measurement is information capacity, which 

can be used to predict camera performance for MV/AI systems. We also 

have metrics related to specific tasks, most importantly object and edge 

detection, and are potentially useful for designing ISP filters that optimize 

OR/MV/AI system performance.  

Using Edge SNRi, which is closely related to the more traditional object-based SNRi, we have shown an 

example of image processing (sharpening + lowpass filtering) that improves object detection and is likely 

to improve MV/AI system performance. This needs to be tested.  

 

As we become more familiar with information capacity and determine the requirements for effectively 

performing tasks, we should be able to select cameras with the minimum number of pixels to meet the 

spec, resulting in faster calculations, lower power consumption, and reduced cost. 

The new measurements are extremely easy to obtain from any of Imatest’s slanted-edge analyses. By 

default, they are included in the Edge/MTF plot and other outputs.  

 

Compared to the earlier Siemens star information capacity method [3], the slanted-edge method is 

faster, more convenient, better for mapping results over the entire image, and better for calculating total 

In Appendix 4 we show that Information capacity C has a monotonic relationship 

with key metrics for object and edge detection, SNRi and Edge SNRi, i.e., increasing 

CNEQ increases SNRi and Edge SNRi. This does not hold for standard sharpness metrics 

based on MTF-only. 

This relationship holds because  𝐺𝑟𝑒𝑐𝑡(𝑓)  and  𝐻𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑓) (the Fourier transforms of the 

objects to be detected) are independent of 𝐾(𝑓), and hence CNEQ. 

In other words, object and edge detection performance are functions of information 

capacity. 

 

The key takeaway of this document is that 

Information capacity C is a key measurement for predicting Object 

Recognition/Machine Vision/Artificial Intelligence system performance. 

Several additional metrics based on C, most importantly Edge SNRi (for edge 

detection), measure specific task performance and can be used to design filters to 

optimize OR/MV/AI system performance. 

Standard MTF measurements are insufficient for this purpose. 
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information capacity. For reliable measurements, Siemens stars need to be well-centered, especially if 

there is significant optical distortion. Siemens stars are better for quantifying the effects of demosaicing 

methods, image compression, and image saturation. 

The diagram below illustrates the two slanted-edge methods, showing the rich interconnections 

between the new KPIs. For the most part, the Imatest user does not need to be concerned about details 

of the two methods. 

 

Summary of calculations for both methods 

As of November, 2023, there is still much work to be done. 

▪ Better understand the numeric results for SNRi and Edge SNRi  

▪ Partner with researchers in industry and academia to correlate information capacity C end Edge 
SNRi with performance of Object Recognition, Machine Vision, and Artificial Intelligence systems 
(accuracy, speed, and power consumption). 

▪ Continue working on a new standard for measuring camera information capacity, assigned ISO 
23654 by the ISO TC42 committee.  

▪ Find better ways of characterizing information capacity in High Dynamic Range (HDR) sensors, 
where noise is not a simple monotonic function of signal. 
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Introduction” by James V Stone, available on Amazon. Shannon’s classic 1948 and 1949 papers [1],[2] 
are highly readable. 

What is information? 

Information is a measure of the resolution of uncertainty. The classic example is a coin flip. For a “fair” 
coin, which has a probability of 0.5 for either a head or tail outcome (which we can designate 1 or 0), 
the result of such a flip contains one bit of information. Two coin flips have four possible outcomes 
(00, 01, 10,11); three coin flips have eight possible outcomes, etc. The number of information bits is 
log2(the number of outcomes), which is the number of flips.  

Now, suppose you have a weirdly warped coin that has a probability of 0.99 for a head (1) and 0.01 for 
a tail (0). Little information is gained from the results of a flip. The equation for the information in a 
trial with m outcomes, where 𝑝(𝑥𝑖) is the probability of outcome i and ∑ 𝑝(𝑥𝑖) = 1𝑚

𝑖=1 , is 

𝐻 = ∑ 𝑝(𝑥𝑖) log2

1

𝑝(𝑥𝑖)

𝑚

𝑖−1

 

H is called “entropy”, and is often used interchangeably with “information”. It has units of bits (binary 
digits). Note that this definition is subtly different from the physical memory element called a “bit.” 

For the fair coin, where p(x1) = p(x2) = 0.5, H = 1 bit. But for the warped coin, where p(x1) = 0.95 and 
p(x2) = 0.05, H = 0.286 bits. If the results of the warped coin toss were transmitted without coding, 
each symbol would contain 0.286 information bits. That would be extremely inefficient.  

Claude Shannon was one of the genuine geniuses of the twentieth 
century— renowned among electronics engineers, but little known to 
the general public. The medium.com article, 11 Life Lessons From 
History’s Most Underrated Genius, is a great read. (Perhaps Shannon is 
considered “underrated” because history’s most famous genius lived in 
the same town.) There are also nice articles in The New Yorker 
and Scientific American. And IEEE has an article connecting Shannon 
with the development of Machine Learning and AI. The 29-minute 
video “Claude Shannon – Father of the Information Age” is of particular 
interest to the author of this report because it was produced by 
the UCSD Center for Memory and Recording Research, which I visited 
frequently in my previous career.  

Channel capacity 

Shannon and his colleagues developed two theorems that form the basis 
of information theory. 

The first, Shannon’s source coding theorem, states that for any message there exists an encoding of 
symbols such that each channel input of D binary digits can convey, on average, close to D bits of 
information without error. For the above example, it implies that a code can be devised that can 
convey close to 1 information bit for each channel bit—a huge improvement over the uncoded value 
of 0.286. 

The second, known as the Shannon-Hartley theorem, states that the channel capacity, C, i.e., the 
theoretical upper bound on the information rate of data that can be communicated at an arbitrarily 
low error rate through an analog communication channel with bandwidth W, average received signal 
power, S, and additive Gaussian noise power, N, is 

Claude Shannon 

https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://www.newyorker.com/tech/annals-of-technology/claude-shannon-the-father-of-the-information-age-turns-1100100
https://blogs.scientificamerican.com/cross-check/profile-of-claude-shannon-inventor-of-information-theory/
https://spectrum.ieee.org/claude-shannon-information-theory
https://spectrum.ieee.org/claude-shannon-information-theory
https://www.youtube.com/watch?v=z2Whj_nL-x8
https://cmrr.ucsd.edu/
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Information_rate
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
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𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = ∫ log2 (1 +

𝑆(𝑓)

𝑁(𝑓)
) 𝑑𝑓 

𝑊

0

 

This equation is challenging to use because bandwidth W is not well-defined, noise is not white, and it 
applies to one-dimensional systems, whereas imaging systems have two dimensions. Slanted-edge 
analysis is one-dimensional. We have developed methods for calculating C for both the Siemens star 
and slanted edge test patterns.  

At this point we can hazard a guess as to why camera information capacity has been ignored for 
cameras. For most of its history the hot topic in information theory was the development of efficient 
codes, which didn’t approach the Shannon limit until the 1990s—nearly fifty years after Shannon’s 
original publication. But channel coding is not a part of image capture (though coding is important for 
image and video compression). Also, camera information capacity was not critically important when 
the primary consumers of digital images were humans (though it is related to perceived image quality), 
but that is changing rapidly with the development of new AI and machine vision systems. And finally, 
there were no convenient methods of measuring it. (Rodney Shaw’s heroic efforts with film in the early 
1960s are very impressive [11].) 

 

Appendix 2. Obtaining Results with Imatest 
Information capacity (C4 and Cmax) and related measurements can be calculated from any of Imatest’s 

ISO 12233-based slanted-edge modules. If you are a beginner with Imatest, we recommend Using 

Imatest – Getting started. 

Some of the newer methods in this white paper are available (as of November 2023) in the Imatest 24.1 

Pilot Program. Imatest 24.1 will be released in spring, 2024. 

Here are some recommended links for slanted-edge modules (from the documentation page, 

www.imatest.com/docs). 

SFR (manual ROIs), SFRplus, eSFR ISO, SFRreg, Checkerboard (auto ROI detection) 

Detailed instructions for information capacity and related calculations are on 

Image information metrics from Slanted edges: Equations and Algorithms – figures of merit that combine 

sharpness and noise, conveniently measured from any slanted edge, including NPS, NEQ, and SNRi.  

Image information metrics from Slanted edges: Instructions – instructions on the new calculations.  

We focus on the settings in the Auto detection modules (settings for SFR, which uses manually selected 

ROIs, are similar).  

The test chart edge contrast should be between 2:1 and 10:1, with 4:1 (the ISO 12233 e-SFR standard 

[4]) strongly recommended.  

General good technique is recommended for acquiring images:  

• Lighting should be uniform and glare-free;  

https://www.imatest.com/docs/imatest_instructions
https://www.imatest.com/docs/imatest_instructions
https://www.imatest.com/support/pilot/
https://www.imatest.com/support/pilot/
http://www.imatest.com/docs
https://www.imatest.com/docs/#sfr
https://www.imatest.com/docs/#sfrplus
https://www.imatest.com/docs/#esfr
https://www.imatest.com/docs/#sfrreg
https://www.imatest.com/docs/#checkerboard
https://www.imatest.com/docs/shannon-slanted-edges/
https://www.imatest.com/docs/information-slanted-edges-instructions/
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• The image should be well-exposed. Avoid saturation (clipping or operating in response regions 

with strong nonlinearities― either highlights or shadows). For consistency in comparing 

cameras, standard exposure is recommended.  

• Use sturdy camera support,  

• ROIs should be reasonably large: at least 30x60 pixels is recommended. More are better.  

• For evaluating cameras for use in OR/MV/AI systems, we recommend minimally or uniformly 

processed images: avoid bilinear filtering (commonly found in JPEGs from consumer cameras) if 

possible. This can be done by starting with raw files, then converting them with LibRaw (for 

commercial files) or Read Raw (for custom binary files). Tone mapping (locally adaptive image 

processing) should also be avoided. 

Setting Channel capacity calculations,  
Make the selection in the Setup window, 

 

―or― in the More settings window, which can be opened at any time from interactive 

(Rescharts) modules. 

 

• The first selection turns off all information capacity calculations. This is the default at the time of the 23.1 

release. We may change it. 

• The remaining selections determine what gets displayed in the Edge and MTF and Edge & Info capacity 

noise plots. 

• The second selection (Auto…) is reasonable when you don’t know whether your image is bilateral-filtered. 

• The fourth selection (smoothed peak noise) is the current recommendation for edge detection 

calculations (Edge SNRi). 

• The fifth (last) selection displays the NEQ information capacity (described below) in the Edge/MTF figure, 

which is slightly more accurate than the Edge Variance C. It is the best selection for minimally/uniformly 

processed images. 

Information capacity is displayed on the upper (edge) plot of the standard Edge and MTF display. Two 

selections have been added to the Display dropdown menu for displaying Information capacity and 

related results:  

https://www.imatest.com/docs/raw#dmoz
https://www.imatest.com/docs/raw#readraw
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1. Edge & Info Capacity noise 
For the two plots, Information capacity is displayed next to the Edge (upper) plot. 

 
Edge & information capacity noise plot 

2. Information-related: NEQ, SNRi, … 
A large dropdown menu allows any two of a large number of selections to be displayed: one on top and 

one on the bottom.  

Here are the selections. Click on the links for examples. 

Selections in the bottom 
plot-only 

 Selections in both plots 
 

Original image crop 
Unbinned image crop 
Noise image crop 
Results summary 
Square visibility image 
Square visibility - LARGE 

Noise Voltage Spectrum 
Noise Power Spectrum (NPS) 
Noise Equiv. Quanta (NEQ) 
MTF 
Edge linearized unnormalized 
Line Spread Function (LSF) 
Edge noise voltage 
Noise autocorrelation 
SNRi square w x w 
SNRi rectangle w x 4w 
SNRi square per pixel2 
SNRi rectangle per pixel2 
LSF Doublet shift 
LSF Doublet amplitude 
LSF Doublet S/N energy 
Edge SNRi sq impulse w x w 
Edge SNRi rect impulse w x 4w 
Edge SNRi 1D doublet 
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Object matched filter 
Edge matched filter 

Appendix 3. Filtering images with the Imatest Image Processing 

module 
The Imatest Image Processing module (instructions on www.imatest.com/ docs/image-processing/) 

includes typical camera degradation and enhancement functions. We used just two of the functions for 

the filtering in this document: Gaussian filtering and USM (Unsharp Mask) sharpening. Here is an 

example of the Image Processing window. 

Basic instructions are 

1. Press Read input file (1) to open the image to be processed. 

2. Select the settings. In this case, select Filter 1 to be Gaussian with sigma = 1 pixel, and select 

Sharpen (USM) with Radius = 2 and Amount = 3. 

3. Press Update calculations (lower-left). 

4. To save the filtered image, press Save image file (2). Make sure the file goes to the location you 

want, and its name makes sense. 

5. To see the effects of the filtering, Check Side-by-side view and crop the image. Until this is done, 

the whole image (input or output) is displayed. 

To see the MTF of the filter (below right), uncheck Side-by-side view and press MTF.  

 
Image Processing module, showing side-by-side view after processing 

 
MTF display for Gaussian Lowpass filtering 

(σ = 1) and USM sharpening (Radius = 2; 
Amount = 3) 

from the Image Processing module 

 

Appendix 4. Correlation between information capacity and 

object/edge detection metrics 
In this section we show how information capacity correlates with the key metrics for object and edge 
detection, SNRi and Edge SNRi, which should be predictors of MV/AI system performance.  

https://www.imatest.com/docs/image-processing/
https://www.imatest.com/docs/image-processing/
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We start with the integral form of the Shannon-Hartley equation from Wikipedia, derived in Shannon’s 
second paper [2]. 

 

We define 𝐾(𝑓) = 𝑆(𝑓)/𝑁(𝑓) as the kernel of the information capacity equation.  

Relating Wikipedia’s nomenclature to ours, N(f) = NPS(f) is the Noise Power Spectrum and 𝑆(𝑓) =

𝑆𝑎𝑣𝑔(𝑓) =  (𝒌 𝑴𝑻𝑭(𝒇))𝟐 =  (𝑽𝒑−𝒑 𝑴𝑻𝑭(𝒇))
𝟐

𝟏𝟐⁄  is the signal power for calculating C.  

To clarify the correlation between the metrics, it is useful to express SNRi and Edge SNRi, in one 

dimension, 𝑆𝑁𝑅𝑖2  or  𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2 = ∫ (
|𝑃𝑜𝑏𝑗(𝑓)|

2
𝑉𝑃−𝑃

2  𝑀𝑇𝐹2(𝑓)

𝑁𝑃𝑆(𝑓)
) 𝑑𝑓 = ∫|𝑃𝑜𝑏𝑗(𝑓)|

2
 𝐾(𝑓) 𝑑𝑓 

where 𝑃𝑜𝑏𝑗(𝑓) = 𝐺𝑟𝑒𝑐𝑡(𝑓) = 𝑘𝑤 
sin(𝜋𝑤𝑓)

𝜋𝑤𝑓
  for SNRi2,  or 

            𝑃𝑜𝑏𝑗(𝑓) = 𝐻𝑖𝑚𝑝𝑢𝑙𝑠𝑒 (𝑓) = 2𝜋𝑓𝐺𝑟𝑒𝑐𝑡(𝑓) = 2 sin(𝜋𝑤𝑓)  for Edge SNRi2. 

Grouping the equations for NEQ, CNEQ, SNRi, and Edge SNRi, expressed as functions of K(f), reveals 

something important. 

𝑁𝐸𝑄(𝑓) =  
𝜇2𝑀𝑇𝐹2(𝑓)

𝑁𝑃𝑆(𝑓)
 ≈  𝜇2 𝐾(𝑓) 

𝐶𝑁𝐸𝑄 = ∫ log2(1 + 𝑁𝐸𝑄𝑖𝑛𝑓𝑜(𝑓)) 𝑑𝑓 =  ∫ log2(1 + 𝜇2 𝐾(𝑓)) 𝑑𝑓
0.5

0

 
𝑊

0

 

𝑆𝑁𝑅𝑖2  =  ∫|𝐺𝑟𝑒𝑐𝑡(𝑓)|2 𝐾(𝑓) 𝑑𝑓 ;     𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2  =  ∫|𝐻𝑖𝑚𝑝𝑢𝑙𝑠𝑒(𝑓)|
2

 𝐾(𝑓) 𝑑𝑓 

𝑵𝑬𝑸(𝒇), 𝑪𝑵𝑬𝑸, and detection metrics SNRi and Edge SNRi have a monotonic relationship 

with each other, based on K(f), i.e., they all increase or decrease with K(f).  

Effects of filtering — Because uniform processing — sharpening or lowpass filtering — does not affect 

the 𝑀𝑇𝐹2(𝑓)/𝑁𝑃𝑆(𝑓) ratio or K(f), it does not affect 𝑁𝐸𝑄(𝑓) or 𝐶𝑁𝐸𝑄, as expected from the data 

processing inequality. It does, however, affect 𝑆𝑁𝑅𝑖2 and 𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2, which have an additional 

|𝑃𝑜𝑏𝑗(𝑓)|
2

 term inside the integral, and can be improved with appropriate filtering. 

 

Appendix 5. Binning noise 
This “green for geeks” box can be skipped by most readers. 

https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem
https://en.wikipedia.org/wiki/Data_processing_inequality
https://en.wikipedia.org/wiki/Data_processing_inequality
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November 10, 2023. We are working on an improved binning calculation that we hope will improve the 
distinction between uniformly sharpened and bilateral-filtered images. 

Binning noise, which has identical statistics to quantization noise, is a recently discovered artifact of the ISO 
12233 binning algorithm. It is largest near the image transition — where the Line Spread Function  
𝐿𝑆𝐹(𝑥) = 𝑑𝜇𝑠(𝑥) 𝑑𝑥⁄  is maximum, and it can affect information capacity measurements. It appears because the 
individual scan lines are added to one of four bins, based on a polynomial fit to the center locations of the scan 
lines, which is a continuous function.  

Assume that n identical signals μs(x) are binned over an interval {-Δ/2, Δ/2}, where Δ = 1 in the 4× oversampled 
output of the binning algorithm (noting that Δ = (original pixel spacing)/4). If there were no binning noise, we 
would expect the binning noise power σBnoise2 to be zero. However, the values of μs(xk) are summed at uniformly 
distributed locations xk over the interval Δ, so they take on values  

𝜇𝑘 = 𝜇𝑠(𝑥𝑘) = 𝜇𝑠(𝑥0 + 𝛿) = 𝜇𝑠(𝑥0) + 𝛿
𝑑𝜇(𝑥)

𝑑𝑥
= 𝜇𝑠(𝑥0) + 𝛿 𝐿𝑆𝐹(𝑥) 

for Line Spread Function LSF. Noting that δ is uniformly distributed over {-1/2, 1/2} we apply the equation for 
the variance of a uniform distribution (similar to  quantization noise) to get 

𝜎𝐵𝑛𝑜𝑖𝑠𝑒
2 (𝑥) = 𝐿𝑆𝐹2(𝑥)𝜎𝑈𝑛𝑖𝑓𝑜𝑟𝑚

2 = 𝐿𝑆𝐹2(𝑥)/12    or    𝜎𝐵𝑛𝑜𝑖𝑠𝑒 = 𝐿𝑆𝐹(𝑥)/√12. 

Although this equation involves some approximations, we have had good success calculating the corrected noise, 

𝜎𝑠
2(corrected) =  𝜎𝑠

2 − 𝜎𝐵𝑛𝑜𝑖𝑠𝑒
2 . Binning noise has no effect on conventional MTF calculations. 

   

Edge noise for a Micro Four-Thirds digital camera, ISO 100, Y (Luminance) channel 
from raw image converted to TIFF with minimal processing. 

Left: with binning noise                                                 Right: binning noise removed 

Binning noise also affects JPEG files with bilateral filtering (nonuniform sharpening). Removing it improves the 
robustness of Edge Variance calculations. 

For now, the Slanted edge calculation setting, on the lower-left of the More settings window, must be set to 
Imatest 22.1 (recommended).  

 

https://classes.engineering.wustl.edu/ese488/Lectures/Lecture5a_QNoise.pdf
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://classes.engineering.wustl.edu/ese488/Lectures/Lecture5a_QNoise.pdf

