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The market for cameras that produce images for Machine vision (MV) and
Artificial Intelligence (Al), in contrast to pictorial images for human vision, is
steadily growing. Applications include automotive (driver assistance and
autonomous vehicles), robotics, security, and medical imaging systems.

Two questions arise when designing camera systems for such applications.

1. How best to select (or qualify) cameras for MV/AIl applications?
2. What image processing (ISP or filtering) is optimal?

To answer these questions, we must go beyond standard measurements of
sharpness (MTF) and noise and apply metrics derived from information
theory, including information capacity and related metrics for object and edge
detection.

These metrics are important because Object Recognition (OR), MV, and Al
algorithms operate on information, not pixels, making them far better
predictors of system performance than MTF or noise.

Imatest has developed a highly convenient method for measuring information
capacity and related metrics from the most widely used ISO standard
resolution test pattern — the slanted edge. We describe how the new metrics
can be used to select (or qualify) cameras and determine the optimum Image
Signal Processing (ISP) for Object Recognition, which is likely to improve the
performance of MV and Al algorithms.

This white paper is a shortened and simplified version of the highly
technical document, “Image Information Metrics and Applications:
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Reference,” linked from
www.imatest.com/solutions/image-information-metrics.

This document describes features of Imatest 24.1, which will be available in the
Imatest 24.1 Pilot program until the spring 2024 release.
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Introduction

Traditional image quality measurements are based on several image quality factors, including sharpness,
noise, dynamic range, optical distortion, tonal and color response, and spatial uniformity.

These measurements have proven useful for human vision, where tradeoffs are often required. For
example, sharpening makes fine features more visible, but it increases noise. Choices are often based on
experience; they come down to what looks best, i.e., what has the most pleasing appearance for the
application.

Object Recognition (OR), Machine Vision (MV), and Artificial Intelligence (Al) systems are different.
System performance is not dependent on image appearance. A more objective metric is required.

Information

Information is a metric that quantifies how much is learned from a measurement. For example, an

individual pixel in a blurred image is highly correlated with its neighbors, so little is learned from its
contents. But if the image is sharp, it is weakly correlated, and much more can be learned from its

contents, i.e., it contains more information.
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The concept of information dates from 1948 and 49 in two celebrated papers by Claude Shannon [1],[2].
Appendix | contains a brief introduction to information theory. Earlier work on measuring information
capacity from Siemens Star images [3] will only be briefly referenced in this document.

In electronic communications, information capacity is the maximum rate that information can be
transmitted through a channel without error. In images, it is the maximum amount of information that a
pixel or image can hold.

The slanted edge

Imatest calculates information capacity from the slanted edge, which is a key part of
the ISO 12233 standard, “Photography — Electronic still picture imaging — Resolution
and spatial frequency responses” [4], is the most convenient and widely used
resolution test pattern. It is highly efficient in its use of space (with multiple edges,
sharpness can be mapped over the image surface), and calculations are very fast.

Imatest offers several charts with multiple edges that can be automatically detected
and rapidly analyzed. Some of the charts offer additional color, tone, noise, and
distortion analysis.

The ISO 12233 algorithm linearizes the image, finds the center of each scan line, fits a curve to the
centers, then uses the curve to add each appropriately shifted scan line to one of four bins. The bins are
combined to form a 4x oversampled averaged edge, which is used to calculate MTF.

The Edge Variance method
The Edge Variance method uses an overlooked capability of the ISO 12233 slanted-edge binning

algorithm to calculate information capacity. e e
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Signal and noise results

The figure on the right shows the results of the ISO 12233
calculation, including the Edge Variance method of measuring
spatially dependent noise.
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e Upper plot: the average 4x oversampled edge, Us(x).
The thick black line is the luminance channel. Informa- ; ‘ , : i ,
tion capacities are shown with a yellow background. s 0 L
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Edge amplitude and spatially dependent noise,
calculated by the Edge Variance method
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e Lower plot: the noise amplitude (voltage), as(x). The thick black line is the smoothed luminance
channel. os(x) plot is a new measurement: spatially dependent noise was previously difficult to
observe.

This white paper contains an abbreviated description of the calculations. The full
description, with all the equations, is in “Image Information Metrics
and Applications: Reference,” linked from www.imatest.com/solutions/image-

information-metrics.

Calculating information capacity C from us(x) and os(x)

The next step is to calculate the information capacity, C, typically in units of bits per pixel, by entering
appropriate values of the signal and noise power, S(f) and N(f), into the Shannon-Hartley equation.

C=fOWlog2 (1 +%>df

S(f) and N(f) are frequency-dependent signal and noise power, and W is the bandwidth, which is always
equal to 0.5 cycles/pixel (the Nyquist frequency). Frequency-dependence is entered into S(f) using
MTEF(f) (described below).

Signal power S
Assuming that the signal is uniformly distributed 3
over the V,., range, the average frequency- .

. E Vmax -
dependent signal power, Savg(f), to be entered E 1
into the Shannon-Hartley equation is s . Vip = Viax— Vinin Vinean =

) % l (Vinax + vmin)lz

Savg(f) = (V;J—p MTF(f)) /12 — Vinin
Noise p0wer N -40 -30 20 =10 Pluﬂl“*', 10 20 30 40
Noise power N has the same units as signal power Signal amplitude from slanted edge.

S; hence S/N is dimensionless.

In examining a great many images, we observe two broad classes of images with very different noise
properties, visible in gs(x). We call them (1) uniformly/minimally processed and (2) bilateral filtered
images. The value of noise power, N, used to calculate C, is different for the two image types.

1. Uniformly/minimally processed images use the mean value of gs?(x) for calculating C. They are
preferred when available, and should a/ways be used for evaluating cameras for MV/AI systems.

2. Bilateral-filtered images, which include most in-camera JPEGs, are sharpened near edges and
often noise-reduced (lowpass filtered) away from the peaks. They can be identified by a peak in
the spatially dependent noise. The smoothed peak noise is used for calculating C.

Special care is required when measuring C with bilateral-filtered images because the noise
reduction can increase the measured value of C while reducing information. That is why the noise
at the peak (where noise reduction is least likely to be applied) is used. The strong peak (below,
left) is a signature of bilateral filtering.
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Bandwidth W

Bandwidth W is always 0.5 cycles/pixel (the Nyquist frequency). Signals above Nyquist do not contribute
to the information content; they can reduce it by causing aliasing — spurious low-frequency signals like
Moiré that can interfere with the true image. Frequency-dependence comes from MTF(f).

Combining Savg(f), N, and W to obtain C
Savg(f), N, and W are entered into the Shannon-Hartley equation.

0.5/Af

— o Sa"g (f) ~ Savg (lAf)
C—fo log2<1+ N )df: ; 10g2(1+—N(f) )Af

Cis measured with relatively low contrast test charts to minimize errors from saturation to ensure that
the camera is operating in its linear region. For most of our work, we use charts with a 4:1 contrast ratio,
following the ISO 12233 standard [4]. Since Vp.pis directly proportional to chart contrast, we label C
according to the contrast ratio: C, for n:1 contrast ratio. We use C; throughout this document.

Cs4is highly dependent on the exposure level, and does not represent the maximum information capacity
of the camera.

Maximum information capacity Cinax — a more consistent metric
C4is strongly dependent on exposure because (1) voltage range AV = V., is a strong function of
exposure, and (2) noise power N is also a function of exposure (derived from image sensor properties).

We have developed a metric for maximum information capacity: Cmax, that is nearly
independent of exposure. It is obtained in two steps.

Step1: Replace the measured peak-to-peak voltage range V)., with the maximum allowable value, Vo—p max = 1.

Step 2: Replace the measured noise power N with Nmean, the mean of N over the range 0 < V<1 (where 1is the
maximum allowable normalized signal voltage V). This is not difficult for linear sensors where the relationship
between V and N is known, but it can be complex for HDR (High Dynamic Range) sensors. Calculation details can be
found in “Image Information Metrics and Applications: Reference,” linked from
www.imatest.com/solutions/image-information-metrics.
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Consistency of Cmax
We performed a set of analyses with a range of Camera 1 (10 MP) Shannon capaclty G, & G, vs. Exposure
exposures (indicated by Vinean). The results showed 45 ot A1 Slanted-ocges! w2 TIEA TS,
that Cnax Was highly consistent with exposure for
the raw->TIFF images (which were not bilateral-
filtered), but less consistent with the bilateral-
filtered (JPEG) images. C; varied as expected.

Ciax may need to be adjusted if the image is
incapable of spanning the entire range of Digital
Numbers (DNs), for example, 0-255 for images with
bit depth = 8. Information capacity measurements L ‘ L T e
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The mean information capacity Cpax is LI O intest

2.847 bits/pixel. Since the camera has 3D plot of information Capacity Cmax over the image surface
16 Megapixels, total capacity ChmaxTotal
for the Luminance (Y) channel = 45.44 MB.

Signal averaging
Signal averaging is a well-known technique that can improve the accuracy and consistency for
measurements of noisy images for both calculation methods.

Extremely noisy images, typically acquired in dim light or at high Exposure Indices, may result in
inaccurate measurements of MTF and C. Signal averaging, where 7 identical captures of the same image
are averaged, is a classic technique for obtaining better measurement consistency by reducing the effect
of uncorrelated noise. When n images are averaged, SNR increases by vn: by 3dB whenever n is
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doubled. To obtain correct information capacity measurements
when the signal is averaged, the noise power is multiplied by 7.

This effect is illustrated below for a camera with a one-inch
sensor, which was imperfectly focused, at ISO 12800. A single
image is shown on the left. Note that MTF is rough and has
significant high frequency noise bumps. For the average of 8
images is shown on the right, information capacity C is slightly
reduced because MTF is better behaved, i.e., there is less
spurious high frequency response.
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Some key results of the Edge Variance method

We tested three cameras that produced both raw and JPEG output for information capacity C as a
function of Exposure Index (ISO speed setting).

Cameras used in the tests

1. | Panasonic 2.14 pm pixel pitch. An older (2010) compact 10.1-megapixel camera with a Leica f/2 zoom
Lumix LX5 lens set to f/4.
2. | Sony A6000 3.88 um pixel pitch. A 24-megapixel micro four-thirds camera with a 60mm Canon macro
lens set to /8
3. | Sony A7Rii 4.5 pm pixel pitch. A 42-megapixel full-frame camera with a Backside-llluminated (BSI)
sensor and a 90mm f/2.8 Sony macro lens set to f/8

We captured both JPEG and raw images, which were converted to 24-bit SRGB (encoding gamma = 1/2.2)
TIFF images (designated as raw—>TIFF) with LibRaw, with minimal processing (defined as no sharpening,
no noise reduction, and a simple gamma-encoding function).
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The figures below show results for the luminance (Y = 0.2125‘-R + 0.7154-G +0.0721-B) channel as a
function of ISO speed (Exposure Index) for the raw->TIFF images (solid lines) and JPEG images (dotted
lines). For the raw—>TIFF images the relationship between ISO speed and C is similar for all three cameras.

Shannon capacity € 4 VS Exposure Index for three cameras
from 4:1 Slanted-edge images: raw-->TIFF & JPEG

3T T T T TTTT T T T T T T T TT

. \ ——=——Camera 1: 10 MpxI; 2.14um pitch

C4 4' 1 SIanted edge ——s— Camera 2: 24 MpxI; 3.88,m pitch
=+ Camera 3: 42 Mpxl; 4.5m pitch g
~wwecCamera 1: JPEG Noise calc 2 |LSF|
- Camera 2: JPEG Noise calc 2 |LSF|
Camera 3: JPEG Noise calc 2 |LSF]| |-

The information capacity for 4:1 contrast edges, Cy,
shows similar trends to Cmax, but since the relatively
low 4:1 contrast uses only a fraction of the available

signal level, Cyis lower than Cpygy. It is also highly
sensitive to exposure.

Cmax showed similar trends, but results were about 2
bits/pixel higher.

Shannon information capacity C (Bits/Pixel)

olu P i ;
10? 10° 10* 10°
Exp Index (ISO speed)
Sh arpenin g C4 as a function of Exposure Index (El) for TIFF
and JPEG images

Simple sharpening, which has the same effect on the

signal and noise response, and therefore does not change S(f)/N(f), would not be expected to have a
strong effect on C. This is indeed the case.

The two examples below show that (uniform) USM sharpening has little effect on slanted-edge
information capacity. The two images (originally a minimally processed TIFF) have been strongly USM
sharpened in the Imatest Image Processing module with Radii =1 and 2 and Amount = 2. The original
unsharpened TIFF has C4 = 2.06 and Cmax = 3.82 b/p.
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2 channel (YL 26) Over fundershool = 17.3% /. 6.4% 1 E = 4385 per PH
§ Chart contrast = 4 14 Over /undershoot = 52.6% / 14.9%
o 5.64® -
5 | Rt +(chart) = 0.439 Use for MTF. T it (Gharteonkasiad L
g V(LR,mean,A) = 0.0469 0.187 0.14 0.11 L \;[(L':Ra )'_\') DM:; Do1r5901-41 ol
w Inf C,=1.84 C__=3.71bip; w St R - - -
H e cap ty max L Info cap C, = 1.83; C__ =3.81blp;
from mean region noise Ll
from mean region noise
L Imatest 23.1.0. ALPHA Master | Imatest 23.1.0. ALPHA Master
-5 0 5 10 -5 0 S5 10
Pixels (Hor) Pixels (Hor)
1.4 T r T . T : .
MTF50 = 0.521 Cy/Px| 2r MTF50 = 0.5524 Cy/Pxl 1
12} =2869 LW/PH NR = 3043 LWIPH NR
RGB 0.529 0.518 0523 Cy®Pxl (RGB) = 0.56556 0.554 0539 Cy/Pxl
1 MTF50P = 0.465 C/P = 2560 LW/PH 15} MTF50P = 0.39 C/P = 2150 LW/PH |
Oversharpening 18.7% Oversharpening 94.0%
08} MTF area PkNorm = 0.411 Cy/Pxl | MTF area PkNorm =0.347 Cy/Pxl
t MTF at Nygquist = 0.541 'E MTF at Nyquist = 0.603
= E 1
06 1
0.4} 1
0.5
=y Nyquist f Nyquist f
MTF: Horiz (V-edge) w/NR T MTF: Horiz (V-edge) w/NR
j h i i 0 . h i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Frequency, Cycles/Pixel Frequency, Cycles/Pixel
TIFF sharpened with Radius =1, Amount = 2. TIFF sharpened with Radius = 2, Amount = 2.
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This highlights another benefit of information capacity measurements. Unlike MTF50, they do not
reward excessive sharpening, which creates “halos” near edges, making the image look sharp in small
displays, but creating artifacts that degrade image appearance on large displays [7]. They also have a bad
reputation for machine vision applications.

Edge location variance (or standard deviation)
An additional result can be derived from the Edge Variance method: The edge location variance (or
standard deviation), o2(Location) or o(Location).

Edges are important because they are often required to distinguish an object. For example, the only way
to distinguish a gray vehicle from a gray concrete background is with the edges.

For signal voltage V(x), the edge is defined as the location x where the Line Spread Function LSF(x) =
dV(x)/dx (in units of 1/pixels) has its peak value. The standard deviation of the edge location is
maximum o, (x) _ ox(x) at peak LSF(x)

L i = =~ i its of pixel
o(Location) maximum aV (x)dx peak LSF(x) in units of pixels

The actual location of an edge is affected by interference from neighboring edges (mostly the closest
edge) as well as g(Location). When edges are close together (small w), interference causes edge
amplitudes decrease, which increases sigma, and it also causes edge locations to shift. Displays of LSF
amplitude and shift versus spacing are shown in the section on Line Spread Function (LSF) doublet

results, below. o(Location) is not a major metric. SNRi and Edge SNRi are more useful.

Summary of the Edge Variance method
e The Edge Variance method has a limited set of results.
o Information capacities Cz and Cmqy and o(Location),
o Aplot of spatially dependent noise power 0s%(x) or amplitude os(x), which can be
useful for determining if the image has been bilateral-filtered.
e Produces a useful approximate measurement of C for bilateral-filtered images, but more
accurate results are obtained from uniformly/minimally processed images, which should always
be used when a camera is being evaluated for use in MV/Al systems.

The Noise Image method of calculating information capacity-related

metrics

The Noise Image method is the second of two methods for calculating information capacity, along with a
rich set of related metrics.

This method involves inverting the ISO 12233 binning procedure. Noting that the 4x oversampled edge
was created by interleaving the contents of 4 bins, each of which contains an averaged (noise-reduced)
signal derived from the original image, we apply an inverse of the binning algorithm to set the contents
of each scan line to its corresponding interleave (Inverse binned... ROI, below). Since the inverse-binned
image is a nearly noiseless replica of the original image, we can create a noise image by subtracting it
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from the original image (which must be corrected for illumination nonuniformity in the direction of the
edge).

The three images are shown below. The noise image (below-right), which has a mean value of 0, has
been lightened and contrast-boosted for display. The other images are displayed with gamma-correction.

(1) Original ROI (2) Inverse-binned / (3) Noise image ROI
de-interleaved / reverse-projected

SonyA6000_Star_SG__60mm_fé_ISO100_s0.8_00091_standard.tiff
Noise Power Spectrum (NPS)

This technique allows several

o
additional image quality z
E
parameters to be calculated, ﬁ
including an alternative z
. . . 3
information capacity =
measurement, Cngg, derived 2 ey L b
i Chant 1, SFR o]
Frequency, Cycles/Pixel —
from NEQ 10*5002 . S 55L '10‘_1 : * * s Readimage file | Save  Reload
- - [ Acquire from Device
Here is an example of results, TEMar2025 104THY  MTFS0n 02120 Oy 1704 LWPH Nowarlys o b curent mage -
with Noise Power Spectrum Setup.. More Settings...
Channel R G B Y e T
H Info capacity C,,_(EdgeVar) = 3.54 4141 376 4.23 RO Srrtion
(NPS) displayed on the top and St eade il Bal0 . Nofse Spectuum, NEQ, SHRI =
Results summary displayed on Info capacity G, (NEQ) = 38 437 394 445 Noise Power Spectrum (NP__ ] Lpper plt
Info capacity C, (NEQ) =155 207 185 215
the bottom.
Noise image variance = 1.68e-05 7.82e-06 1.3e-05 6.25¢-06 [Logaxis Iiegs Stats
Noise image std dev = 0.0041 0.0028 0.00361 0.0025 Lower plat
MNoise 1D power = 1.77e-05 8.51e-06 1.37e¢-05 6.96e-06 Results summary v
Input signal V(P-P) = 0.105 0.103 00879 0.103
Input signal V(mean) = 00886 0.0858 0.0777 0.0858 MR T
Save data Eit | (3 imatest®

Noise Power Spectrum (NPS) displayed on the top and Results
summary on the bottom
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Noise Voltage or Power Spectrum (NPS) . . 5uny‘nswu_s?r_sa_._s'omm_ra_‘lsown_?u.s_onogrl_shnaa'm.tm .
Noise Power Spectrum (NPS)

NPS can be displayed with a logarithmic x-axis

(above) or a linear x-axis (on the right; selectable

by the Log x-axis checkbox, above). The Noise

Power and Voltage Spectrum plots have the

same shape: only the y-axis labels are different.

=
!

Noise Power Spectrum (NPS)
g
m

The 1D Noise Power or Voltage spectrum is
derived from a 2D Fourier transform (FFT) of the L N
noise image. The |n|t|a| 2D FFT haS zero V] 0.05 0.1 015 02 025 0.3 0.35 0.4 045 0.5
frequency at the image center. The image is Noise Power Spectrum (NPS)

divided into several annular regions, and the

average noise power is found for each region. NPS is used for the NEQ and SNRi calculations.

Frequency, Cycles/Pixel —

=1
&

Noise Equivalent Quanta (NEQ)

NEQ is a figure of merit used in medical imaging [5], but is unfamiliar in general imaging. It is described
in a 2016 paper by Brian Keelan. Essentially, it is a frequency-dependent Signal-to-Noise (power) Ratio, in
contrast to MTF, which is signal amplitude response-only.

Units are the equivalent number of detected quanta that would generate the measured SNR when
photon shot noise is dominant.

WMTF(f)

NEQ() =5

where the mean linear signal, u, can be defined in either of two ways, depending on how NEQ is to be
interpreted.

In the standard definition of NEQ, where NPS  SonyAS000_Star_SG_60mm_f6_150100_s0.8 00091 st % 1= € . L G
Noise Equivalent Quanta (NEQ)

is dominated by photon shot noise, u? =
V;2oan = @%, where G is the mean count of
the detected quanta, and NEQ is proportional
to the count of detected quanta, g.

NEQ can be used for calculating Detective
Quantum Efficiency), DQE(f) = NEQ(f)/q;,
where @; is the mean number of quanta
incident on each pixel. It is not yet in Imatest.

Noise Equivalent Quanta (NEQ) per pixel

Frequency, Cycles/Pixel —

0 005 0.1 015 02 025 0.3 035 0.4 045 05
The NEQ plot can be made smoother and more Noise Equivalent Quanta (NEQ)
consistent using Signal Averaging.

Information capacity from NEQ, Cneg

A variant of NEQ, NEQins(f) (not plotted), calculated using 4 = Vp_p/V12 (to be consistent with the
Edge Variance calculation), is used to calculate information capacity, Cnzo.

N. Koren Image Information Metrics in Imatest, November 2023 p. 12


https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links

Creo = fwlog (1 + NEQuso(f)) df = fo'slog <1 +—“2MTF2(f)> df
NEQ — 2 info - 2
0 ! 0 NPS(f)
where bandwidth W = fy,,= 0.5 Cycles/Pixel. Channel R G B Y
Info capacity CMN(EdgeVarJ =354 411 376 423
. Info capacity CG{EdgeVar] =163 212 171 222
The key results, C4(NEQ) an_d Cmar(NEQ), are Sllghtly Infocapacity C,,(NEQ) = 38 437 394 445
different from the Edge Variance results, most likely Info capadity C, (NEQ) =15 207 165 215
because the calculated Noise Power Spectrum, NPS(f), is Noiseimage variance = 168605 7.62606 1.36-05 6256-06
used. (The Edge Variance calculation assumes constant N D roen " = 179008 85108 15Ta00 SE8ats
. . . Input signal V(P-P) = 0105 0.103 00879 0.103
NPS’ I.e., Whlte n0|se)' Input signal V(mean) = 00886 0.0858 0.0777 0.0858

Results summary

Ideal Observer SNR (SNRi)
SNRI is a measure of the detectability of objects, described in ICRU Report 54 [14] and in papers by Paul
Kane [12] and Orit Skorka and Paul Kane [13].

2 2
SNRi? :ﬂ <|G(vx,1/y)| MTF (vx,vy)>dvx dv,

NPS(vy,vy)

G (vy,vy) is the Fourier transform of the
rectangular object to be detected, defined
below. v is spatial frequency in Cycles/Pixel.

SonyA6000_Star_SG__60mm_f8_IS0O100_s0.8_00091_standard.tiff
ISP R T T T T T T LI B P

&
o
T

Using Parseval’s theorem, we can show that
SNRIZ is equivalent to the total (integrated)
Signal/Noise energy of the object in the spatial
domain.

T i3iNGv-2023 12:08:23
: ROl 1: 183x265 pixels
6024 x 4024 pixels (WxH)
Chart i:m:wlrast ratio = 4
: : mean noise [Auto]
MTF50 = 0.2137 G/P = 1720 LW/PH |

SNRi dB for w x 4w rectangle
w
(=]

10

Feature size w in pixels for w x 4w rectangle —
L i i FI A i

The objects to be detected are typically
rectangles of dimensions w x kw, where k=1

for a square or 4 for a 1:4 aspect ratio rectangle.
Amplitude, Vp_p, is typically obtained from a chart
with a 4:1 contrast ratio. SNRi is displayed for each color channel for w from 0.5 to 20.

0.5 10°? 2 5 10! 20

SNRi for sharp, low-noise (ISO 100) image

Note that like C4, SNRI is strongly affected by exposure and chart contrast. But unlike C, SNRI is affected
by image signal processing (sharpening, etc.).

SonyA6000_Star_SG__60mm_f8_ISO100_s0.8_00091_standard tiff
T ; T T T

.. wxd4wrectangle SNRiperpixel |

We currently prefer a closely related
measurement, Edge SNRi, for determining the
performance of pre-filtering (ISP performed prior
to Object Recognition/Machine Vision/Al).

w
o
T

]
[54)
T

~183x265 pixels |
6024 x 4024 pixels (WxH)
Chart contrast ratio = 4
mean noise [Auto]
MTF50 =0.2137 C/P = 1720 LW/PH

(]
o
T

SNRi displayed in dB per pixel?

Because standard SNRi plots can be difficult to
read, we have added a plot of SNRi in dB per
pixel?, shown on the right. It is somewhat easier to
read than the standard SNRi image, but it is

more of a relative measurement— useful for
evaluating changes from image processing.

w
T

SNRi dB per pixel for w x 4w rectangle

Feature size w in pixels for w x 4w rectangle —
L A ; i it

05 10° 2 5 10! 20

SNRI in dB per pixel2 for low-noise (ISO 100) image
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Tip— Click on Data cursor in the dropdown below the thumbnail on the upper right to get a reading of
the actual value.

Object visibility
The goal of SNRi measurements is to predict object visibility for small, low contrast squares or 4:1
rectangles. The SNRI prediction begs for visual confirmation.

We have developed a display for Imatest that does this with real slanted-edge images.

We show two images, below, from a camera with a Micro Four-Thirds sensor. The sides of the squares
arew=1,2,3,4,7,10, 14, and 20 pixels. The original chart has a 4:1 contrast ratio (light/dark = 4). The
middle and inner squares have reduced contrast. The outer patches correspond to the SNRi curves,
where, according to the Rose model [8], SNRi of 5 (14 dB) should correspond to the threshold of
visibility. low noise 1SO 100 (left); noisy ISO 12800 (right)

SonyAG000_Star_SG__60mm_fB_ISO100_s0.8_00091_standard.tiff SonyAB000_Star_SG__60mm_f8_IS012800_s1-160_00099. iff

14 14

widths
pixels

widths
pixels

Chart contrast =4 ROI1: 122x132 pxis — 136x132

Low noise I1SO 100 (left) Noisy I1SO 12800 (right)
MTF50 = 0.214 ¢/p; Crmax = 4.24 b/p; MTF50 = 0.140 c/p; Cmax = 1.37 b/p.

The SNRi curve on the right is for the noisy ISO SonyAB000_Star_SG_ 60mm_f8_ISO12800_51-160_00099.1if

12800 image on the right, above. The w = 1 squares B B W*‘:“sq“a’é S"F;“ R

are invisible; the w = 2 and 3 squares are only : . SURURTRPINE SRR S SN S S SO

marginally visible, and w = 4 squares are clearly E wf

visible. In the plot, the Y (luminance) channel SNRi % ! _ ,

atw =2 is 9 dB; it reaches 11 dB for w = 3; close to £ | - ;g,“rfgg;i;i;ﬁ |

the expectation that the threshold of visibility is 2 N Lottt &

around 14 dB, ") o el
ol Feature size win pixels for wx w square - |

i
0.5 10? 2 5 10! 20

SNRi for noisy ISO 12800 image (above, right)
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Edge Signal-to-Noise Ratio (Edge SNRi)

Edge SNRi is an edge-based measure of the detectability of the edges of small objects, similar to SNRi,

described above.

|H, vy) |2 MTF?(vy,vy)

Edge SNRi? =ﬂ<

NPS(vy, vy)

) dvy dv,,

H(vxVy) is the Fourier transform of the edges (the gradient) of the object to be detected.

For a rectangle of dimensions w x kw, the function is the
derivative, h(x, y), of the rectangle, g(x, y), that describes the
object, equivalent to a pairs of Dirac delta functions of

opposite polarity.
J"_w—’r

)

Odd impulse pair

1(x/w)=2[8(x+%)

Edge SNRi is displayed for each color channel for w=0.5, 0.7,
1,1.4,62,3,4,7,10, 14, 20.

Unlike C, Edge SNRIi is affected by signal processing
(sharpening, etc.), making it useful for evaluating pre-filtering
(ISP filtering applied prior to the machine learning/Al blocks).
Edge SNRi has become our favorite metric for feature
detection.

A.SF doublet for spacing = 5 pixels; Peak locs = 40.187

SNRi dB for w x 4w rectangle

Edge-SNRi dB for w x 4w rectangular impulse

1S0200_LX100_22.7mm_f4_1010871.png

w x 4w rectangle ROI1

10 Cpnio * 4§ Chchetson = 0-6

Ratio

02-Nov-2023 14:38:48
ROI 1 169x263 pixels

4288 x 2872 pixels (WxH)

mean noise [Auto]

MTFS50 = 0.1579 Cy/Pxl = 907.2 LW/PH

Feature size w in pixels for w x 4w rectangle —

10° 2 5 10! 20

Edge-SNRi_ROI 1

02-Nov-2023 14:38:48
ROI 1: 169x263 pixels
4268 x 2872 pixels (WxH)
mean noise [Auto]
MTF50 = 0.1578 Cy/Pxl = 607.2 LW/PH

Feature size w in pixels for w x 4w rectangular impulse —

10° 2 5 10! 20

SNRI curve (Upper), Edge SNRi curve (lower

60.212

Line Spread Function (LSF) 3
doublet results 2
Edge SNRi is based on pairs of '
Line Spread Functions of

opposite polarity called LSF
doublets, illustrated for w =
5.0 and 0.5 pixels. ?

o

1I.éiF doublet for spacing = 0.5 pixels; Peak lo., 4 {-| {7

-05

-1

0 5 10 15 20

LSF Doublet. w = 5.0 pixels.

SonyAG000_Star_SG__60mm_fB_ISO100_s0.8_00091_standard.tiff
—

25

-15
0 5 10 15 20 25

LSF Doublet. w = 0.5 pixels. Amplitude

is 1/3 as large as for w = 5.0 pixels.
10* < ° 10"

LSF Doublet shift in pixels

As spacing w decreases,
the peaks are closer (but
shifted more from their
original locations), and
amplitude decreases.

LSF Doublet Shift in

a(location) = 0.0776

Error bars represent 1o

ILSF Doublet amplitude|

|LSF Doublet amplitude]

4=046 8bil

05

-04 Doublet spacing (pixels) — 1 Doublet spacing (pixels) —
a3 10° 2 5 10! 05 10° 2 5 10’
LSF Doublet shift as a function of LSF Doublet amplitudes as a function of
spacing w spacing w
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Summary of the Noise Image method

e The Noise Image method uses a 2D image of the noise to calculate several image quality metrics.

e It only gives reliable results with uniformly or minimally processed images, which can be
distinguished from bilateral-filtered images by the absence of a peak in 0s2(x) or as(x) displays.
It should not be used with bilateral-filtered images.

e It produces a rich set of related results, including Noise Power Spectrum (NPS), Ideal observer
SNR (SNRi), Edge SNRi, Noise Equivalent Quanta (NEQ), and a second information capacity
measurement, derived from NEQ, that can be compared with the Edge Variance results (they are
slightly more accurate because NPS(f) is not assumed to be constant).

Image Signal Processing (ISP)

Several recent papers [16],[17],[18] state that appropriate image processing prior to Object Recognition,
Machine Vision, or Al algorithms may improve system performance (accuracy, speed, and power
consumption). Since information capacity is relatively independent of Image Signal Processing, it
provides little guidance about how to design optimal image processing.

Image signal processing algorithms can be designed to optimize a specific task, for example, the
detection of an object of a specific size, often a small rectangle, or its edges. In practice, ISP needs to
perform well over a range of tasks: detecting objects of edges greater than a minimum size and limiting
interference from neighboring objects.

SNRI has some drawbacks as an object detection metric. Plots of SNRi are challenging to interpret
because SNRi increases with feature size. And there is the problem of object color. What If the object has
the same color as the background (e.g., gray cars
in front of gray concrete)? In such cases it is the
edge that matters. Because of these shortcomings,
we prefer Edge SNRI.

10°? 1S0200_LX100_22.7mm_f4_1010871.png
Line Spread Function (LSF) ROI1

Peak LSF = 0.0184 DN/px|

Line Spread Function (LSF)

Pre-filtering: effects of ISP filtering
Starting with an unsharpened image, we applied
sharpening and/or lowpass filtering (blurring)
using the Imatest Image Processing module.

Chart g, oSFRISO

Pixels —»

-20 15 -10 5 0 5 10 15 20

Readimagefile | Swe  Reload
O Acquire from Device

New analyss of the current image.

Seup Moy

Display MIF c
22, Informatian-related: NE

Line Spread Function (LSF) | Upper plot

The Line Spread Function and Edge SNRi for a
wx4w rectangle are shown below. We selected
smoothed peak noise for the calculations.

1 Center VI 0_0_L

Image Stats

Edge SNRI dB for w x 4w rectangular edges

Feature size w in pixels for w x 4w rectangular edges — =
" P 3202 ALPHA

Bit O3 imatest®

0s 10° 2 5 10 20

The key results (Edge SNRI and SNRi in dB per

) . . Results with no filtering. LSF (top), Edge SNRi (bottom)
pixel?) for a wx4w object are shown in the Table.

Filter MTF50 | Edge SNRi | Edge SNRi | SNRidB/pxI*> | SNRi dB/pxI? Crmax a(loc.)
c/P w=1 large w w=1 w=5 (NEQ) | pixels

None 0.158 -0.52 5.49 21.7 28.3 2.94 0.13

USM R2A3 0.294 -1.5 4.7 20.7 26.5 2.73 0.219
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USM R2A3 + 0.243 6.1 9.8 24.7 30.0 3.44 0.105
o =1 Gaussian LPF

o =1 Gaussian LPF 0.122 1.56 8.5 24.9 33.7 2.72 0.89
USM R2AS5 (extreme 0.357 -6.8 -1.1 14.7 20.1 2.02 0.26
oversharpening)

Good news! Edge SNRi (9.8 dB for large w; 6.1 at w = 1) was better for the USM + Gaussian lowpass
filter than either the unfiltered or USM-only filtered image. This is an extremely significant result. It
shows that correctly chosen filtering can improve the performance of a key task (edge detection) before
the image is sent to the Object Recognition/Machine Vision/Al processing block.

This important result shows that filtering can improve object detection,
indicating that it may be able to improve Object Recognition, Machine Vision,

and Artificial Intelligence system performance.

Edge SNRi appears to be slightly more sensitive than SNRi dB per pixel® (showing greater differences for
different filtering). Sharpening + lowpass filtering gives the best result. Results are well-correlated with

edge location noise, o(location).

The USM R2A5 image, whose Edge/MTF plot is shown on the
right, is extremely oversharpened. It included because we
often see comparable oversharpening, and we do our best to
discourage it: it is a cheap way of improving MTF50
measurements and image appearance on tiny displays
(phones), but it creates “halos” (peaks near edges) that
degrade appearance in large displays, along with every other
performance metric. The poor Edge SNRi and other results
are additional reasons to avoid this type of image processing,
which we have described in [7].

Matched filter
In the above section, we discussed a applying a filter F(f) to
optimize either SNRi or Edge SNRi.

An optimum filter can be determined if a task (for example,
detecting an edge of a certain size, with no interference from
nearby edges) is defined. Such afilter is called a matched
filter, Fratcnea (f)- Because real-world cameras must
perform a multitude of tasks, exact matched filters are

rarely practical. They are discussed in more detail in

ISO200_LX100_22-7mm_f4_1010871-USM_R2A5.png

Edge profile: Horiz (V-edge) (sagittal) 14-Nov-2023 22.53:14
4288 x 2872 pixels (WxH
| 12.3 Mpxls 8 bit
E ROI1: 169x263 pixels
] 7.5% left of ctr 0_0_L - "
= - 10-90°% rise = 0.70 pixels.
@ | Y-channel (vL7) PH
E Over / unders] 12400 24R5 L0778
@ V(LR,mean,A)= 0.0786 0.0197 0.0589 0.0492
£ | edgeange=s512° Info cap C, = 0.695; C, =2.2blp;
w from smoothed peak noise
0201
Imatest 23.2.0.b.2. ALPHA Master
s L i h
5 0 5 10
Pixels (Hor)
4 MTF50 = 0.3565 Cy/Pxl
= 2048 LW/PH NR
35 RGB)= 0,345 0.36 0384 CyiPx
3 MTFS0P = 0.252 C/P = 1448 LWI/PH
- Oversharpening 226.1%
25 MTF area PkNorm =0.227 Cy/Pxl
lE Peak MTF = 3.36
= 2 MTF al Nyquist = 0.0669
1.5
1
0.5
MTF: Horiz (V-edge) w/NR

0 0.2 0.4 0.6
Frequency, Cycles/Pixel

Edge/MTF plot for extremely oversharpened image.

MTF50 correlates poorly with performance.

“Image Information Metrics and Applications: Reference,” linked from

www.imatest.com/solutions/image-information-metrics.

We were fortunate that the filter parameters we found by trial-and-error were reasonably close to the
matched filter calculated from the image properties (sharpness and noise).
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Exposure sensitivity

Like C4, SNRi and Edge SNRi vary with exposure. The plot
on the right shows Edge SNRi vs. exposure for the same
camera data used to plot C,and Cmax VS. exposure, above.
Because there is no consistent relationship between
exposure and noise in HDR sensors, we will need a
Standard exposure for comparing cameras (and it will
need to be in the nascent ISO 23654 standard). For
images encoded with gamma = 0.454 = 1/2.2 (sRGB, etc.),
Vmax = 0.5 is reasonable. For linear (gamma = 1) images,
the equivalent exposure results in Vi = 0.5%2=0.22
(where Vmay is normalized to a maximum of 1).

Camera 4 (16 MP) Edge SNRi vs. Exposure
from 4:1 Slanted-edges: raw-->TIFF
T T T

\0
\\ﬂ

Edge SNRi

—8—Edge SNRI@wW=1] |
~—f—Edge SNRi @ w = 2

Py
107 10°
.encoding gamma)

V ax (Proportional to exposure

Edge SNRi vs. maximum ROI pixel level Vpqx

Intelligence systems. The key measurement is information capacity, which
can be used to predict camera performance for MV/AI systems. We have
additional metrics related to specific tasks, most importantly object and
edge detection, and are potentially useful for designing ISP filters that
optimize OR/MV/AI system performance.

forw=1and 2.
Summary
We have developed a powerful toolkit of new measurements — Figures of
Merit for imaging systems that combine sharpness and noise — that are -l \\}
especially applicable to Object Recognition, Machine Vision, and Artificial \ \\"( -

R

Using Edge SNRi, which is closely related to the more traditional object-based SNRi, we have shown an
example of image processing (sharpening + lowpass filtering) that improves object detection and is likely
to improve MV/AI system performance. This needs to be tested.

In Appendix 4, we show that Information capacity € has a monotonic relationship with
key metrics for object and edge detection, i.e., increasing Cneg increases SNRi and
Edge SNRiI. This does not hold for standard sharpness metrics based on MTF-only.

This relationship holds because the Fourier transforms of the objects to be detected are
independent of Cygg.

In other words, object and edge detection performance are functions of information
capacity.

As we become more familiar with information capacity and determine the requirements for effectively
performing tasks, we should be able to select cameras with the minimum number of pixels to meet the
spec, resulting in faster calculations, lower power consumption, and reduced cost.

The new measurements are easy to obtain from any of Imatest’s slanted-edge analyses.
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The key takeaway from this document is that

Information capacity C is a key measurement for predicting Object Recognition/Machine
Vision/Artificial Intelligence system performance.

Several additional metrics based on C, most importantly Edge SNRi (for edge detection)
can be used to design filters to optimize OR/MV/AI system performance.

Standard MTF measurements are insufficient for this purpose.

To do — Better understand the numeric results for SNRi and Edge SNRi.

Partner with researchers in industry and academia to determine the correlation between information
capacity and related metrics and MV/AI system performance.

Continue working on the new I1SO 23654 standard for camera information capacity.

Find better ways of characterizing information capacity in High Dynamic Range (HDR) sensors, where
noise is not a simple function of signal.
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Appendix I. Information theory background

Because concepts of information theory are unfamiliar to most imaging engineers, we present a brief
introduction. To learn more, we recommend a text such as “Information Theory— A Tutorial
Introduction” by James V Stone, available on Amazon. Shannon’s classic 1948 and 1949 papers [1],[2]
are highly readable.

What is information?

Information is a measure of the resolution of uncertainty. The classic example is a coin flip. For a “fair”
coin, which has a probability of 0.5 for either a head or tail outcome (which we can designate 1 or 0),
the result of such a flip contains one bit of information. Two coin flips have four possible outcomes
(00, 01, 10,11); three coin flips have eight possible outcomes, etc. The number of information bits is
logz(the number of outcomes), which is the number of flips.

Now, suppose you have a weirdly warped coin that has a probability of 0.99 for a head (1) and 0.01 for
a tail (0). Little information is gained from the results of a flip. The equation for the information in a
trial with m outcomes, where p(x;) is the probability of outcome i and X1 p(x;) = 1, is

H = ;P(xi)logz o

H is called “entropy”, and is often used interchangeably with “information”. It has units of bits (binary
digits). Note that this definition is subtly different from the physical memory element called a “bit.”

For the fair coin, where p(x;) = p(x2) = 0.5, H = 1 bit. But for the warped
coin, where p(x;) = 0.95 and p(x2) = 0.05, H = 0.286 bits. If the results of the
warped coin toss were transmitted without coding, each symbol would
contain 0.0286 information bits. That would be extremely inefficient.

Claude Shannon was one of the genuine geniuses of the twentieth
century— renowned among electronics engineers, but little known to the
general public. The medium.com article, 11 Life Lessons From History’s
Most Underrated Genius, is a great read. (Perhaps Shannon is considered
“underrated” because history’s most famous genius lived in the same
town.) There are also nice articles in The New Yorker and Scientific
American. And IEEE has an article connecting Shannon with the
development of Machine Learning and Al. The 29-minute video “Claude
Shannon — Father of the Information Age” is of particular interest to the

Claude Shannon
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author of this report because it was produced by the UCSD Center for Memory and Recording Research,
which | visited frequently in my previous career.

Channel capacity
Shannon and his colleagues developed two theorems that form the basis of information theory.

The first, Shannon’s source coding theorem, states that for any message there exists an encoding of
symbols such that each channel input of D binary digits can convey, on average, close to D bits of
information without error. For the above example, it implies that a code can be devised that can
convey close to 1 information bit for each channel bit—a huge improvement over the uncoded value
of 0.286.

The second, known as the Shannon-Hartley theorem, states that the channel capacity, C, i.e., the
theoretical upper bound on the information rate of data that can be communicated at an arbitrarily
low error rate through an analog communication channel with bandwidth W, average received signal
power, S, and additive Gaussian noise power, N, is

c=w log2(1+%)=fowlog2<1 +%)df

This equation is challenging to use because bandwidth Wis not well-defined, noise is not white, and it
applies to one-dimensional systems, whereas imaging systems have two dimensions. Slanted-edge
analysis is one-dimensional. We have developed methods for calculating C for both the Siemens star
and slanted edge test patterns.

At this point we can hazard a guess as to why camera information capacity has been ignored for
cameras. For most of its history the hot topic in information theory was the development of efficient
codes, which didn’t approach the Shannon limit until the 1990s—nearly fifty years after Shannon’s
original publication. But channel coding is not a part of image capture (though coding is important for
image and video compression). Also, camera information capacity was not critically important when
the primary consumers of digital images were humans (though it is related to perceived image quality),
but that is changing rapidly with the development of new Al and machine vision systems. And finally,
there were no convenient methods of measuring it. (Rodney Shaw’s heroic efforts with film in the early
1960s are very impressive [9].)

Appendix 2. Obtaining Results with Imatest

Information capacity (C4 and Cmax) and related measurements can be calculated from any of Imatest’s
ISO 12233-based slanted-edge modules. If you are a beginner with Imatest, we recommend Using
Imatest — Getting started.

Some of the newer methods in this white paper are available (as of November 2023) in the Imatest 24.1
Pilot Program. Imatest 24.1 will be released in spring, 2024.

Here are some recommended links for slanted-edge modules (from the documentation page,
www.imatest.com/docs).

SFR (manual ROIs), SFRplus, eSFR ISO, SFRreg, Checkerboard (auto ROI detection)

Detailed instructions for information capacity and related calculations are on
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Image information metrics from Slanted edges: Equations and Algorithms

Image information metrics from Slanted edges: Instructions

The test chart edge contrast should be between 2:1 and 10:1, with 4:1 (the 1ISO 12233 e-SFR standard
[4]) strongly recommended.

General good technique is recommended for acquiring images:

Lighting should be uniform and glare-free;

The image should be well-exposed. Avoid saturation (clipping or operating in response regions
with strong nonlinearities— either highlights or shadows). For consistency in comparing
cameras, standard exposure is recommended.

Use sturdy camera support,

ROIs should be reasonably large: at least 30x60 pixels is recommended. More are better.

For evaluating cameras for use in Object Recognition or Machine Vision systems, we recommend
minimally or uniformly processed images: avoid bilinear filtering (commonly found in JPEGs from
consumer cameras) if possible. This can be done by starting with raw files, then converting them
with LibRaw (for commercial files) or Read Raw (for custom binary files). Tone mapping (locally
adaptive image processing) should also be avoided.

Setting Channel capacity calculations,

Make the selection in the Setup or T s ] Speedup
More settings window, 14. Ctrs, allinner (18V,20H - of 15 sgs) N ROl size

V & H edges (both) ~  Normal: no extra reg marks o < | d
The first selection turns off all Stepchat (] Wedge (1-8) Exposure OK Erplinizs ()
information capacity calculations. Thisis | Az sobrpeicnes a Mormal ROI wicth =

O Target Detection Settings Calc info cap - Auto & NEQ. Display NEQ “ 7 MaxROIth
the defaU|t at the tlme Of the 231 Mo information capacity calculation
release. We may Change it. Calc information cap - Auto edge noise detect
Calc info cap - mean noise near edge

The remaining selections determine Calc info cap - smoothed peak naise

Calc info cap - Auto & NEQ. Display NEQ

what gets displayed in the Edge and MTF
Information capacity settings

and Edge & Info capacity noise plots.

Information capacity is displayed on the upper (edge) plot of the standard Edge and MTF display. Two
selections have been added to the Display dropdown menu.

1. Edge & Info Capacity noise
Information capacity is displayed next to the Edge (upper) plot. Below, left.

2. Information-related: NEQ, SNR;, ...
A large dropdown menu (above, right) allows any two of a large number of selections to be displayed:
one on top and one on the bottom. Below, right.

N. Koren Image Information Metrics in Imatest, November 2023 p. 22


https://www.imatest.com/docs/shannon-slanted-edges/
https://www.imatest.com/docs/information-slanted-edges-instructions/
https://www.imatest.com/docs/raw#dmoz
https://www.imatest.com/docs/raw#readraw

consistency_LX100_22.7mm_{4_i200_s1-10_1010871.tiff

Display MTF compensation
1 | Edge profite NU Corr: Horiz (V-edge) (sagittal) 20 d 22 Information-related: NEQ, SNRi, . ~
4288 x 2872 pixels (WxH)
R 123 Mpxls 16 bil H T B ke LSF doublet S/N energy ~ Upper plot
T08[ : rise = 3.18 pixels
@ ROI1: 139x216 pixels
T | g, = 902.8 per PH 11 Leftof 9V -1.0.L v
= 3 e Over f undershoat = 1.1%/ 0.3%
o 06 [ 3 um per pixel . Charl contrast = 4 Log x-axis Image Stats
5 % o (chart) = 0.239 Use for MTF.
50‘4 . Gamma = 0.2 % V(LR mean )= 0.0777 0.0195 0.0582 0.048 Lower plot
g Edge 5.15° Bl Ao rigtiie L2 Edge-SNRi 1D doublet v
w ifrom NEQ (Noise image meathod) T
02 7 Rotate 30 I whote img Crop Lugns mmage cop
ifi = Unbinned image crop 2.0.b.2. ALPHA
0po o el matest-23:1.0.6.11. BETA-Master- Chart 9. eSFR1SO i Noise image crop a imatest®
Results summary
-10 -5 0 5 10 15 Read image file Save Reload s ibiit
= = are visibility image
LDl ) [] Acquire from Device .
4 10° consistency_LX100_22.7mm_{4_i200_s1-10_101087 1.tiff Square wisibility - LARGE
i ] i : : : New analysis of the current image ~ Moise Voltage Spectrum
Mean signalLR= " Noise Power Spectrum (NPS)
Fast : 1 '
B 351 00777 0olos - Setup More Settings... Moise Equiv. Quanta (NEQ)
2 Mean‘edge noise L,R = - WTE
8 3] 0.00212 0.000739 3 . Display MTF compensation
o 21. Edge & Info Capacity naise = Edge lineanzed unnormalized
Eos| Line Spread Function (LSF)
5 H {-15, 20} pixels 5 Edge noise voltage
; 2 1 Center Vi 0.0_L ~ Noise autocomrelation
B 15 e SNRi square w x w
: ’ SNRi rectangle w x 4w
& LSF Doublet shif
w Luminance (¥) channel - LSF Doublet ampitude
05 HelD  b3.4.0.6.11. BETA LSF doublet S/M energy
. [ "
Pixels (Hor) e et Exit 0 imatest® Edge-SNRi sq impulse w x w
1. Edge & information capacity noise plot 2. Information-related...

dropdown

Appendix 3. Filtering images with the Imatest Image Processing

module

The Imatest Image Processing module (instructions on www.imatest.com/ docs/image-processing/)
includes typical camera degradation and enhancement functions. We used just two of the functions for
the filtering in this document: Gaussian filtering and USM (Unsharp Mask) sharpening.

The effects of filtering are visible when you check Side-by-side view and crop the image. Until this is
done, the whole image (input or output) is displayed. To see the MTF of the filter (below right), uncheck
Side-by-side view and press MTF.

Image proceasing oy | Tt (1) S0_LX00_2 T4 _1ONOGPY 5 (2002 i)
e frwdnion B, e Fog. 2,
egate
Dosma 15 af oy D
[Foqmare) 0 i 2
Fier 1 Gaussian v
21 1 sgma

[Ineiss (gaussian)
= 21
J -l

[CIFitter 2: Gaussian
i .

Cotarand tona shancomen. nchung HOR

(7] CCM feator mats) swcon |7

[ Tons mapping (tonsmap)
i ]

MTF (20(1) Transfer Function]

] Local Tans Mapping flor HOR)
£ 2]
2 o]

[ Cantrast-Ltd Histogram Equalization

Imatest 21.20.0.2 ALPHA Master

2B i)
£ &,

Shapenng i noss reduction

w0? 10"
‘Spatial frequancy in Cycies Pixel
Processed image + filer 1 +USM sharpen

[ Bilateral Filter (may be slow) 7] Side by shde viww
— R o
— e I |
] Myrm s i M = U0 » [ vewinpu | Processed (R) +fiter 1 + USM sharpen ot Saveimapemien | M PINRADH | OCR  MIFmP  imagesm =
T 2 sy vew MTF display for Gaussian Lowpass filtering
T —R Y Reset Read input fle (1) =i _ . . _ ..
e o ey [r— Jncheck Si-byaideviw o rastors | (o = 1) and USM sharpening (Radius = 2;
Update calculations Sove settings Save Imags fle @) Exit Amount = 3)
Image Processing module, showing side-by-side view after processing from the Image Processing module
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Appendix 4. Correlation between information capacity and

object/edge detection metrics
In this section we show how information capacity correlates with the key metrics for object and edge
detection, SNRi and Edge SNRI, which should be predictors of MV/AI system performance.

We start with the integral form of the Shannon-Hartley equation from Wikipedia, derived in Shannon’s
second paper [2].

Frequency-dependent (colored noise) case [edi)

In the simple version above, the signal and noise are fully uncorrelated, in which case S + NV is the total power of the
received signal and noise together. A generalization of the above equation for the case where the additive noise is not white
(or that the S/ IV Is not constant with frequency over the bandwidth) is obtained by treating the channel as many narrow,
independent Gaussian channels in parallel:

C= /{)Blogz(l-k %)df

We define K(f) = S(f)/N(f) as the kernel of the information capacity equation.

Relating Wikipedia’s nomenclature to ours, N(f) = NPS(f) is the Noise Power Spectrum, and S(f) =
Savg(f) = (k MTF(f))? = (Vp_p MTF(f))Z/IZ is the signal power for calculating C.

To clarify the correlation between the metrics, it is useful to express SNRi and Edge SNRi, in one

(122 2
dimension, SNRi? or Edge SNRi? = f('POb’(f)kvg’;)’:)MTF (f)) df = f|Pobj(f)|2 K(f)df

where Pypi(f) = Grece (f) = kw %m;f) for SNRI2, or
Pobj(f) = Himpuise (f) = 2nf Grece (f) = 2 sin(mwf) for Edge SNRI2.

Grouping the equations for NEQ, Cngg, SNRi, and Edge SNRi, expressed as functions of K(f), reveals
something important.

KEMTFA()

NEQ(f) = NPS) 1? K(f)

w 0.5
B = fo logs(1 + NEQunso (f)) df = fo loga (1 + 42 K(f)) df

SNRi? = flGrect(f)lzK(f) df ; Edge SNRi* = f|Himpulse(f)|2K(f)df

NEQ(f), CnEq, and detection metrics SNRi and Edge SNRi have a monotonic relationship
with each other, based on K(f), i.e., they all increase or decrease with K(f).

Effects of filtering — Because uniform processing — sharpening or lowpass filtering — does not affect
the MTF?(f)/NPS(f) ratio or K(f), it does not affect NEQ (f) or CnEg, as expected from the data
processing inequality It does, however, affect SNRi? and Edge SNRi?, which have an additional

2
|Pob]-(f)| term inside the integral, and can be improved with appropriate filtering.
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