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Abstract 
The dead leaves image model is often used for measurement 

of the spatial frequency response (SFR) of digital cameras, where 
response to fine texture is of interest. It has a power spectral 
density (PSD) similar to natural images and image features of 
varying sizes, making it useful for measuring the texture-blurring 
effects of non-linear noise reduction which may not be well 
analyzed by traditional methods. The standard approach for 
analyzing images of this model is to compare observed PSDs to the 
analytically known one. However, recent works have proposed a 
cross-correlation based approach which promises more robust 
measurements via full-reference comparison with the known true 
pattern. A major assumption of this method is that the observed 
image and reference image can be aligned (registered) with sub-
pixel accuracy. In this paper we study the effects of registration 
errors on the calculation of texture-based SFR and its derivative 
metrics (such as MTF50), in order to determine how accurate this 
registration must be for reliable results. We also propose a change 
to the dead leaves cross-correlation algorithm, recommending the 
use of the absolute value of the transfer function rather than its 
real part. Simulations of registration error on both real and 
simulated observed images reveal that small amounts of 
misregistration (as low as 0.15px) can cause large variability in 
MTF curves derived using the real part of the transfer function, 
while MTF curves derived from the absolute value are significantly 
less affected.  

Introduction 
The best-established characterization of image sharpness and 

resolution is the Modulation Transfer Function (MTF). The MTF 
of a system dictates how spatial frequencies in a scene are boosted 
or attenuated (relative to a normalized DC gain) by the imaging 
system—including optics, finite photosensor size, etc. An implicit 
assumption of MTF determination is that of a linear model relating 
spatial patterns of light in a scene and the spatial distribution of 
pixel values recorded in an image. That is—at least locally for a 
given point in the image field—we assume the pixel values are 
related to the illumination coming from the scene via a linear, 
time-invariant (LTI) system (or more appropriately for imaging 
applications: linear and shift-invariant, or LSI).  

When dealing with optics and sensors directly, or simple 
linear image processing, this LTI assumption is often an 
appropriate model. The ISO 12233:2014 standard [1] prescribes 
two powerful methods for determining the MTF of a system, the 
slanted-edge method and the Siemens Star method, both requiring 
a linearized image. However, the images we consume are 
increasingly subjected to substantial non-linear processing, which 
breaks this assumption.  

One of the primary applications of such processing is image 
denoising, which can roughly be described as discriminating 
between which pixel value variations are supposed to be there 
(content) and which are not (noise). It is often extremely difficult 
for even the most advanced denoising algorithms to make this 
distinction correctly every time. The primary casualties of 
imperfect (usually over-aggressive) denoising are low-contrast, 
high-frequency image structures, often known as image texture, 
which are indistinguishable from noise in the eyes of the 
algorithm. 

It is extremely difficult to characterize the effects of modern 
denoising algorithms on all possible images taken by a camera 
because they are often very content dependent. In practice this 
goes even beyond the analysis-confounding effects of being local 
but non-linear. Edge-preserving smoothing algorithms such as 
bilateral filtering [2] and anisotropic diffusion [3] perform quite 
differently in flat areas and near edges. Bilateral filtering, Non-
Local Means [4], and BM3D [5] (as well as a host of other 
denoising algorithms) operate by searching in a region around a 
pixel for similar content and basing their action on what they find. 
Moreover, the latter two work at a patch-wise level, determining 
similarity by comparing structure within a small (e.g., 8´8 px) 
window, compared with other windows in the region. This all 
means that it is impossible to know how such an algorithm will act 
on a given (small-scale) image feature in the wild where the 
content around it in the image may be different every time.  

Because of this content dependent action, an MTF 
measurement derived from a slanted edge (a relatively simple 
image structure to denoise without degradation) as per ISO 12233 
would not faithfully indicate the effect on spatial frequencies in 
other parts of the image where the true structure is not so obvious. 
We instead desire an SFR measure which appropriately conveys 
the effect of the system on different frequencies, whatever context 
they may appear in in the image. The Siemens Star, as a more 
complex structure, is more susceptible to non-linear smoothing and 
thus MTF measurements derived from it may be less optimistically 
biased. However, since its structure is both fixed and not 
representative of many real-world image structures, it is not fully 
adequate for describing the average effect of content-dependent 
algorithms.  

Dead Leaves Texture Analysis 
One effective way to observe the effects of a full system, 

including processing, on fine details found in real images is to test 
how it responds to (pseudo-)realistic image content. The “Dead 
Leaves,” or “Spilled Coins,” test pattern and analysis technique of 
Cao et al [6] emulates a 1/𝑓$ power spectral density (PSD), which 
has been empirically observed to characterize natural images, by 
generating a field of randomly-placed and randomly-sized 
overlapping circles, as illustrated in Figure 1.  



 

 

The original paper described a method for calculating the 
“Texture MTF” of a camera from an image of this pattern by 
making use of this global, statistical analytic assumption about the 
ground truth pattern, producing a semi-reference metric. Kirk et al 
[7] introduced a successor to this method which makes use of a 
known ground truth reference image of the dead leaves pattern. By 
comparing a test image directly to the reference image, pixel by 
pixel, this dead leaves cross correlation method can measure local 
degradations in the image. This is especially important due to the 
aforementioned local-content dependent nature of many denoising 
algorithms.  

This tremendous leap in the strength of the assumptions made 
by this method over its predecessor—which in turn allows a 
commensurate leap in measurement strength—is dependent 
entirely upon the assumption of accurate alignment of the 
reference image of the pattern and the actual observation of it (i.e. 
the pattern as it appears in the test image). Without this, the 
assumptions of the cross-correlation MTF calculation fall apart. 

In both [7] and the proposed ISO 19567 Part 2 standard based 
on it, registration of the two images is achieved by localizing four 
registration marks on the corners of the patterned area. Using the 
precise locations of these marks, the reference image is 
transformed to be in perfect alignment with the observed one. 
These documents note that these corners must be located with sub-
pixel accuracy, but do not comment on what the effect on the 
calculation will be if this accuracy is not achieved.  

The remainder of this paper is organized as follows. First, we 
review the two methods for determining a Texture MTF curve 
using the dead leaves pattern, with special emphasis on the 
implications and nature of these models. We then propose a change 
to the calculations used in the cross-correlation method, 
specifically the use of the absolute value of the transfer function 
rather than the real part. We then describe an experiment for 
exploring the effects misregistration of the reference and observed 
images can have on MTF calculations, and show results for both 
the existing method and our proposed change. Finally, we offer 
interpretation and conclusions based on the results. 

Dead Leaves Texture MTF Calculations 
The dead leaves pattern described in the previous section has 

many desirable properties, including: 
1. The desired 1/𝑓$ frequency power distribution, which also 

has the extremely useful characteristic that a signal with such 
a distribution will be scale invariant. 

2. An image of this pattern will contain many different image 
features—ranging from busy areas of tiny circles to broad, 
contrasted edges—which will elicit different behaviors from 
content-dependent processing. 

 
Power spectral density is well known as describing the 

average power a random signal has at different frequencies. It 
contains only the magnitude, not the phase, of this information. 
The PSD of the output of a linear system (in our case, a digital 
image), characterized by transfer function 𝐻(𝑓), is related to the 
PSD of the input (the test chart target) via the equation 

𝑃𝑆𝐷+,-./ 𝑓 = 𝐻 𝑓 $ ∙ 𝑃𝑆𝐷2-3./2 𝑓 1  

The classic dead leaves analysis method (which we will refer 
to as the “direct” method, following [7], as it directly makes use of 
the image PSD) is to determine the magnitude of the transfer 
function by taking the square root of the ratio of the observed PSD 
to the analytically assumed PSD. This was expanded upon by 
McElvain et al [8] to include compensation for the noise PSD, 
thereby making it more robust for noisy, real-world images.  

𝑀𝑇𝐹7897+3/:2 𝑓 = 	
𝑃𝑆𝐷+,-./ 𝑓 − 𝑃𝑆𝐷=>+?/ 𝑓

𝑃𝑆𝐷2-3./2 𝑓
2  

A major shortcoming of this method is that it uses a relatively 
weak assumption about the ground truth signal: that its power 
spectral density has a certain analytical form. This limits the test to 
only making use of the statistics of the reference pattern, not the 
known pattern instance itself (as essentially all other test chart-
based image quality analyses are), which in general lets you 
determine a lot less about a quantity. Relatedly, the assumption is 
about global quantities only—the average Fourier component 
powers—not directly making use of any local structures in the 
image, such as the edges of the random circles themselves.  

Dead Leaves Cross-Correlation MTF 
The Dead Leaves Cross-Correlation MTF method was first 

proposed by Kirk et al [7]. It makes use of a patterned area of 
overlaid circles, similar to the original dead leaves measurement. 
The new method, however, effectively moves from using this 
pattern for a semi-reference measurement value—using only 
statistical knowledge about an image of the pattern—to a full-
reference calculation wherein we actually directly compare 
observed pixel values to pixel values of a ground truth image.  

This method works by making use of four registration marks 
at the corners of the patterned field, as seen in Figure 2 (Left). 
These corner locations are known beforehand in the reference 
image and are detected at test time in the observed image. By using 
these coordinates as anchor points, it is possible to determine a 
homography that transforms the reference image from its intrinsic 
coordinate space to the observed image space, aligning it pixel for 
pixel with the observed instance of the pattern.   

Once the observed and reference patterns have been aligned, 
this method makes use of the Cross-Power Spectral Density 
(CPSD) of the two signals. If a random, wide sense stationary 
signal x with Fourier spectrum 𝑋(𝑓) and PSD ΦCC(𝑓) is passed 
through a linear system with frequency response 𝐻 𝑓  to produce a 
similarly defined output signal y, two relations will be true. First, 
the power spectral density of y is 

ΦDD 𝑓 = 	𝐸 𝑌 𝑓 𝑌 𝑓 ∗ = 	𝐸 𝐻 𝑓 𝑋 𝑓 𝐻 𝑓 ∗𝑋 𝑓 ∗  

= 𝐻 𝑓 $ΦCC 𝑓 3  

Figure 1.  Monochrome dead leaves pattern texture detail. 



 

 

Here 𝐸[] is the expected value, and ∗ denotes the complex 
conjugate. This is simply a restatement of Equation 1, and is the 
origin of the original dead leaves direct method. The other quantity 
of interest, the CPSD, is given by 

ΦDC 𝑓 = 	𝐸 𝑌 𝑓 𝑋 𝑓 ∗ = 𝐻 𝑓 𝐸 𝑋 𝑓 𝑋 𝑓 ∗  

= 𝐻 𝑓 ΦCC 𝑓 4  

The cross-correlation approach to determining 𝐻(𝑓) is similar 
to the previous method: 

𝐻 𝑓 = 	
ΦDC 𝑓
ΦCC 𝑓

5  

Whereas previously the denominator was an analytically 
assumed function, which in practice was rather hard to achieve 
perfectly with a finite pattern of overlaid circles, here the 
denominator can be achieved simply by taking the square of the 
Fourier coefficients of the spatially-registered reference image 
(which is x in the above). 

The numerator of Equation 5 is the CPSD, which classically 
is interpreted as the amount of power shared at a given frequency 
by both signals, and the phase difference between them at that 
frequency, on average. Since an LTI system behaves the same 
across an entire image, its average behavior is exactly its general 
behavior, and Equation 5 will not yield any different result from 
the direct dead leaves method (in the noiseless case).  

However, with non-LTI systems this is not true, as some 
spatial frequencies may be better preserved in some parts of the 
image (e,g. at high contrast edges) and removed from others (low-
contrast textures) as discussed in the introduction. So while the 
calculated CPSD may describe a global average from around the 
image field, that does not mean it does not make use of local phase 
information similarities between the observed and reference 
images. 

To get some intuition behind this claim, consider the fact that 
the CPSD is the same as the Fourier transform of the cross-
correlation function of the observed and reference images. Cross-
correlation can be interpreted as a matching process, wherein the 
two images are shifted relative to each other by various amounts, 
and at each shift amount, a measure is taken of how similar the 
structure of the two images. Two images that have very similar 
structures and are perfectly aligned will have a very high 
correlation score. However, if you shift one image even just one 
pixel to the side, the edges which had so nicely aligned previously 
will be out of sync and the correlation score for this shift will 
suffer a significant drop. The sharper this drop is (i.e. the more the 
two images are structurally similar), the closer to a delta function 
the cross-correlation function will be, and thus the broader its 
Fourier transform (the transfer function) will be. 

When cross-correlation is used, the result incorporates not just 
the average frequency powers in the observed image are (as we use 
in the “direct” method), but about how those frequencies align 
locally with those of the reference image. So while the cross-power 
spectral density still tells us about averages of common frequency 
content between two signals, it does so using local areas of 
similarity.  

 

 

The Role of Image Registration  
Accurate registration of the reference image to the observed 

image space is of vital importance to the dead leaves cross-
correlation method.  

The standard way to register the two patterns as of this time is 
to independently detect and localize the special fiducials at the 
corners of the dead leaves pattern area. If one of these registration 
marks is localized incorrectly in the observed image, then when the 
reference image is transformed, it will be transformed incorrectly. 
This will make the edges of the circles that comprise the ground 
truth pattern out of alignment with their test image counterparts. It 
could also change the shape of some circles to be more elliptical, 
or have otherwise detrimental effects that will make the images 
dissimilar.  

Figure 2 (Right) illustrates how even a small amount of 
registration error (0.5px on each of the corners, in random 
directions) can change the values between two otherwise identical 
images. Here the same (grayscale) reference image was 
transformed twice with slightly different corner locations, but pixel 
value differences, indicated by a green-magenta spectrum, abound 
due to the different samplings that happen. 

 

 
Figure 2. (Left) Imatest dead leaves chart with four registration marks at the 
corners of the patterned field. Each corner, once detected in a real image, is 
used as an anchor to fit a homography from the reference image space to the 
observed image space.  (Right) Detail of two misregistered (black and white) 
dead leaves pattern areas using the MATLAB imshowpair() function. 
Differences in pixel values between the two images are seen on a magenta-
to-green spectrum, a perfectly registered image would be grayscale. The two 
compared images differ by having the corners of one misplaced by 0.5px in 
random directions. 

In this paper, we do not study the effectiveness of any 
particular registration-mark detecting routines. Instead, we ask a 
more general question about the entire class of such algorithms: 
how accurate do they need to be so that the Texture MTF results 
are not affected by their performance? 

Any bias in the detection routines—meaning they always tend 
to misdetect the registration marks in the same direction—will 
effectively simply add a constant shift to the transformed reference 
image in the opposite direction of the bias. For the remainder, we 
presume unbiased detection routines, which may cause 
misregistration error in any direction, uniformly.  

Note that in a few special cases—all registration error 
happens radially from or towards the center of the pattern area for 
example—the transformed reference image will have a Fourier 
spectrum that may be relatable to the expected one analytically. 
However, in general, independent misregistration of the four 
corners will cause a slight perspective effect which we will be 
unable to account for analytically.  

Proposed Change to Absolute Value of Cross-
Correlation 



 

 

We propose a change to the dead leaves cross-correlation 
MTF measurement, specifically the use of the absolute value of the 
transfer function instead of the real part.  

Firstly, the use of the absolute value is more in line with the 
traditional definition of the MTF of a linear system. For example, 
if the real part is used, there is nothing in the mathematics that 
prevents a negative value. Note that in the case of an actual LTI 
system with a symmetric point spread function, the real part and 
absolute value of the transfer function are the same. In any other 
case, they will be different.  

We specifically note that even though taking the absolute 
value discards the phase information of the transfer function, this 
does not reduce it to a calculation equivalent to the original 
“direct” dead leaves MTF calculation. In the LTI case it would be, 
but this measurement is specifically intended to measure non-LTI 
systems. 

The cross-correlation approach, as stated above, still makes 
use of local comparisons of structure around the image. The 
calculation is no longer based simply on global frequency content 
but specifically on the alignment and similarity of structures in the 
observed and reference images. That is, we are very much using 
the aligned phase information of the image and the pattern when 
performing this calculation- it is implicitly incorporated into the 
cross-correlation procedure, regardless of if we are discarding the 
transfer function’s phase later on by taking the absolute value. 

This difference between the direct method and the proposed 
absolute value method is illustrated by example in Figure 3. A test 
image was generated directly from the dead leaves reference 
image, then blurred with a Gaussian blur (𝜎 = 0.7px), and finally a 
moderate amount of bilateral filtering was applied. The MTF 
curves generated by the three methods—the direct method of Cao 
et al, the cross-correlation method with real part used, and the 
cross-correlation method with absolute value used—are shown. 
The cross-correlation method with absolute value is distinctly 
different from the direct method (and in fact is distinctly similar to 
the real part result), showing that they are not the same for non-
linear systems despite the fact that the absolute value is used in 
both. 

 
Figure 3. MTF curves for a non-linearly smoothed image, generated by the 
original dead leaves method, the cross-correlation method using the real part 
of the transfer function, and the proposed cross-correlation method using the 
absolute value of the transfer function. Note that using the absolute value of 
the cross-correlation does not make it similar to the original (“Direct”) method. 

The resulting MTF is still an average over the whole region of 
the image containing the textured field, but the values which are 
being averaged do make use of local information shared (or not 
shared) by the images. Moreover, taking the real part of the 

transfer function was not necessarily “making use of the phase 
information” in any particularly well motivated way.  

The following toy example illustrates a simple situation where 
texture MTF derived using the real part of the transfer function 
deviates significantly from expectation, while the absolute value 
MTF behaves as expected. 

Consider a test image, with Fourier spectrum denoted 
𝑌(𝑓Q, 𝑓S), consisting of a dead leaves pattern observation which is 
exactly the same as the reference image, similarly denoted 
𝑋(𝑓Q, 𝑓S), but simply shifted to the right by one pixel. Obviously, it 
has not suffered any loss of sharpness and we would expect a 
calculated MTF to reflect this. Mathematically, adding a shift to 
the image is equivalent to adding a linear phase term to its Fourier 
spectrum, so for this one-pixel right-shift we get  

𝑌 𝑓Q, 𝑓S = 	 𝑒U$VWX ∙ 𝑋 𝑓Q, 𝑓S 6  

Applying the procedure previously described for determining 
the transfer function (or even from simple inspection of the above 
equation), we see that the transfer function is 𝐻 𝑓Q, 𝑓S = 	 𝑒U$VWX , 
the real part of which is visualized in Figure 4.  

 
Figure 4.  System response of a one pixel shift to the right. (Left) The real part 
of the transfer function. (Right) The radial mean of the real part. 

When taking the radial average of the real part of this function 
as prescribed in the dead leaves cross procedure, it reduces to the 
1-dimensional MTF curve shown in Figure 4. Not only does this 
MTF imply a significant loss in image sharpness, but it actually 
has negative values, which is forbidden by most reasonable 
definitions of MTF.  

Using the absolute value of the transfer function on the toy 
example above produces the expected MTF, which is a perfect 
MTF of 1 for all frequencies. This toy example illustrates how 
using the real part of the transfer function can be inconsistent with 
our expectations of image quality measurements. Moreover, this 
example actually does describe what would be a compounding 
effect to a cross-correlation real-part MTF curve in practice if the 
registration mark detection algorithm exhibits any bias in the 
direction of its error.  

We emphasize that this proposed change is motivated purely 
by the mathematical nature of determining an equivalent to MTF 
by means of cross-correlation. It does not stem from particulars of 
the implementation of the dead leaves method or from real world 
challenges such as imperfect registration accuracy.  

Methodology 
In order to isolate and study the effects of misregistration on 

cross-correlation derived MTF curves, we performed the following 
experiment. We started with a high resolution raster image of our 
dead leaves chart (5163´5163px texture region), rescaled it with 



 

 

bicubic interpolation to a smaller size (730´730px texture region), 
and applied a simple Gaussian blur (𝜎 = 0.7px) to generate our 
simulated “observed” image. Since we know exactly the locations 
of the registration marks at the corners of the pattern field in the 
reference image and also the exact transformation used to generate 
the observed image, we can also determine the exact location of 
the registration marks in the observed image. 

If these true registration mark locations were fed along with 
the observed image to the dead leaves cross-correlation routine, the 
homography calculated by the routine would be exactly the same 
as the one we used to generate the simulated image, and so the 
reference image would be perfectly aligned. In this case we would 
see a perfect MTF curve corresponding to a Gaussian transfer 
function, regardless of if the real part or absolute value method was 
used. 

However, in lieu of using the true registration mark locations, 
we generate slightly perturbed locations and pass these to the 
calculation routine instead. This causes a slightly different 
homography to be calculated and thus a slightly differently 
resampled and aligned reference image to be generated.  

Registration error vectors were generated independently for 
each of the four registration points at the corners of the field. The 
vectors were generated in random directions with a uniform 
distribution over all angles. This simulates a registration-mark 
detection routine which is unbiased in the orientation of its errors. 
As previously mentioned, if there is a bias in a specific routine 
(e.g. the routine tends to label the marks as 0.5px to the left of 
where they truly are), this will theoretically lead to a phase shift 
term in the transfer function which will affect results generated 
using the real part, but not affect the results generated using the 
absolute value.  

The magnitudes of the random errors were chosen to be the 
same for all four corners for each given simulation, for simplicity. 
Thus, for a given simulation, all four registration marks will be, 
e.g., 0.5px off from the true locations, but in four random 
directions. We simulated 100 different misregistrations (different 
sets of random directions) for each magnitude or registration error, 
ranging from 0 to 10px. Though not exhaustive, we believe this 
provides a sufficient initial sampling of the space of MTF shape 
variations.  

We emphasize that this is only a study of the effects of 
misregistration on the algorithm’s output, and so we primarily look 
at simulated observations with zero noise.  Of course, real world 

effects such as noise, sharpening, and denoising will affect the 
shapes of these curves in various ways, but we consider this 
registration error effect to be orthogonal to and compounding on 
top of those. However, to observe the effects on a real, non-linearly 
processed image, we repeated this process (without the simulated 
blur) on a test image from a Nexus 5X mobile device. In this case, 
the “true” registration mark locations were identified with sub-
pixel accuracy by eye. 

Results and Discussion 
For the sake of understanding the consequences of registration 

error on both the method currently in use by practitioners as well 
as the method we have proposed, all figure here will display 
similar graphs for each method, side by side. So that we need not 
repeat the observation in the discussion of each plot, we note up 
front the general trend that the variation in MTF curves is less 
(often significantly so) for those derived with the absolute value of 
the transfer function, compared to those using the real part.  

Figure 5 shows the effects of increasing amounts of 
registration error for a single random instance of misregistration 
directions of the four registration points on a simulated image. 
Note that the 0px miregistration case is the “ideal” MTF curve for 
this system which was modeled with a Gaussian blur of 0.7px 
standard deviation. This representative example shows an obvious 
general trend: as you increase the magnitude of the registration 
error, MTF curves drop at all frequencies. This makes intuitive 
sense, as we are attempting to correlate the observation with a 
warped reference that looks increasingly dissimilar. Though it is 
reasonable to expect no more than one or two pixels’ worth of 
registration error from a localization routine, we include here 
unrealistically large amounts as well to help illustrate the trend.  

Whereas Figure 5 displays MTF curves corresponding to 
different amounts of misregistration in the same direction, each 
plot in Figure 6 shows entire random populations of MTF curves 
for a single magnitude of misregistration. Each population consists 
of 100 MTF curves generated by misregistration in a random 
direction, and so represents the range of possible MTF curve 
shapes that might be generated from any image where that amount 
of registration error is expected. Obviously, a narrower spread is 
better and a wide spread indicates that there should be less 
confidence in any individual MTF curve observed in practice.  

 

Figure 5. Simulated observation MTF curves generated using a reference image misregistered to the test image by different amounts. The test image was a 
simulated observation with Gaussian blur, 𝜎 = 0.7px. 



 

 

Real Image Example 
Figures 7 and 8 display the same families of results, but 

generated from a real, processed image taken on a Nexus 5X. 
Interestingly, Figure 7 shows minimal amounts of change in the 
MTF curve shape for small amounts of misregistration (<= 1 px in 
magnitude) using either calculation method. However, Figure 8 
indicates that registration error in different directions (of the same 

magnitude) can still lead to a nontrivial spread in overall MTF 
curve shape. Interestingly, when using the absolute value method 
in the real image case, the MTF curve variations tend to converge 
at higher frequencies closer to the “true” MTF curve (when the 
registration is accurate, in this case chosen by eye). 

These results, both on the simulated image with simple linear 
Gaussian blur and the real image with non-linear processing, 
indicate why in [7] the authors note, “The spatial matching process 

Figure 6. Simulated image populations of MTF curves generated by registration errors of various magnitudes in 100 random directions.  
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is important and can have significant influence on the later 

Figure 7. Real observation MTF curves generated using a reference image misregistered to the test image by different amounts. The test image was taken with a 
Nexus 5X, with true registration mark locations identified by eye. 

Figure 8. Real image (Nexus 5) populations of MTF curves generated by registration errors of various magnitudes in 100 random directions. 
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results.” The method’s sensitivity to inexact registration are clear 
from this investigation, and should be known to practitioners. 
Fortunately, this effect is lessened fairly significantly by the 
change to using the absolute value of the transfer function. 

Registration Error’s Effect on MTF50 
In many applications, MTF curves are often reduced to single 

value summary metrics such as MTF50, MTF10, MTF at 
Nyquist/4, etc. These often act as very rough correlates to 
quantities of interest, e.g., MTF50 is often used as an indicator of 
sharpness and MTF10 is often used as an indicator of “resolution.” 
Figure 9 shows the effects of misregistration on the common 
summary metric MTF50, the frequency value at which the MTF 
curve first drops to 50 percent modulation relative to the DC gain. 

These plots are related to cross-sections of the plots in Figures 
6 and 8 at the 0.5 modulation line. Thus, these plots reveal the 
same trends as the previous plots showing the full MTF curves, 
though more obviously quantized: variance in MTF50 value 
caused by slight misregistration increases with the magnitude of 
the registration error and is generally less when using the absolute 
value of the transfer function than the real part. 

Conclusions 
We have presented a study of the effects that small, random 

amounts of error in the registration process between an observed 
image and the ground truth reference image can have on the dead 
leaves cross-correlation measurement. By simulating random 
registration errors, both on simulated images processed with a 

simple linear Gaussian blur and on real images from a Nexus 5X 
device, we have shown that MTF curves using this method can 
vary significantly from one random observation to another, even 
when there is as little as half a pixel of registration error at each 
corner of the field.  

We have also proposed a change to the cross-correlation 
method of calculating Texture MTF, namely the use of the 
absolute value of the transfer function as opposed to the real part. 
We promote this change primarily on mathematical justification 
and consistency with other accepted definitions of MTF. We 
suggest that using the absolute value does not discard the 
advantages of the cross-correlation method (i.e., making use of the 
phase information) because the advantage actually comes from the 
use of a full reference instead of a semi-reference ground truth, and 
the cross-correlation intrinsically makes use of local phase 
information around the image.  The fact that this change also 
produces results which are much more stable in the face of real-
world difficulties such as accurate registration is serendipitous.   

Further studies are needed to verify that the absolute value 
method exhibits the same robustness to various amounts of noise, 
sharpening, and non-linear processing as its predecessor, but these 
initial results are promising. Other future work in this area may 
include a similar analysis of the effect of various amounts of 
geometric distortion on the MTF calculations.  

 
 
 

 

Figure 9: MTF50 error distributions due to misregistration errors of varying magnitude, represented as boxplots. Each box represents the distribution of error 
values between the true MTF50 value and the ones derived from MTF curves generated from a misregistered reference image. Each box is centered on the mean 
of the distribution, with the width including 50% of the values and the black whiskers representing 90%. The red line indicates the median.  
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