

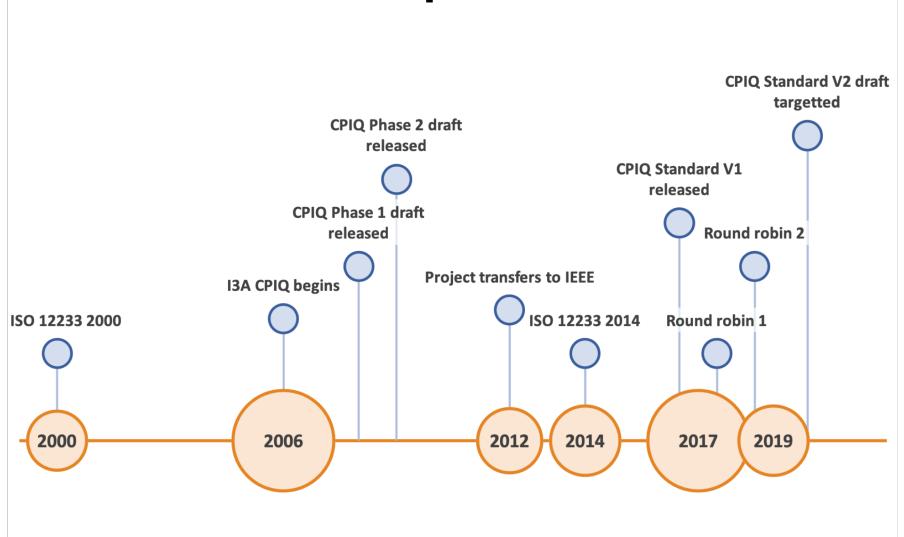
Reducing the cross-lab variations of image quality metrics

Henry Koren, Imatest LLC <henry@imatest.com>

IEEE 1858 & CASC working group chair

Vickrant Zunjarrao, Microsoft Corp. <vizunj@microsoft.com>

IEEE 1858 working group vice chair


Benjamin Tseng, Apkudo <benjamin@apkudo.com>

IEEE CASC working group vice chair

January 15, 2019

Standards Development Timeline

Camera Phone Image Quality (CPIQ)

Objective, perceptual-based image quality metrics

Scored in Just Noticeable Differences (JNDs)

7 metrics in 1858-2016 standard

Drivers of variation:

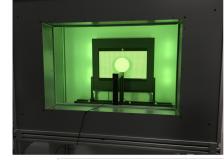
```
SFR
TB — Texture Blur
VN — Visual Noise

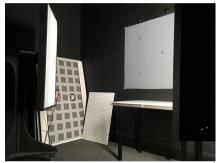
Scene luminance & metering mode
CL — Chroma Level
CU — Color Uniformity

Near infrared in light source

LGD — Lateral Geometric Distortion
LCA — Lateral Chromatic Aberration

High quality / low variation
```


Where variation comes from

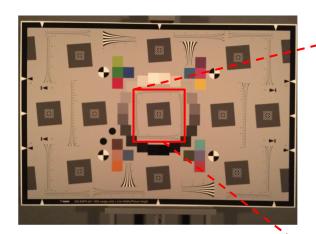

Mobile devices are "black box" cameras with dynamic image signal processors (ISPs):

- Nonlinear spatial processing
- Automatic Exposure
- Automatic White Balance
- Autofocus

Labs have varying:

- Light sources (CCT / spectra)
- Test charts (reflectance / frequency / quality)
- Distances
- Human-constructed labs
- Human-executed capture procedures
- Human-sorted data sets
- Human-implemented algorithms

Round Robin Studies

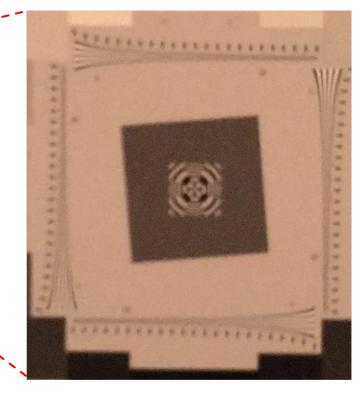

Round Robin 1	Round Robin 2	
June-2016 to July-2017	Oct-2017 to Dec-2018	
iPhone 4 iPhone 5C iPhone 5S iPhone 6S Plus HTC One M8 LG G2 Nexus 6P Sony Experia Z5 Galaxy S7 Edge	iPhone 8 Plus iPhone 5S iPhone 6S Plus LG G2 Nokia 1020 Samsung S7 Edge Huawei P10 Xiaomi Mi6 OPPO R11 Google Pixel Microsoft Surface Pro (Front & Rear)	
6 Labs	5 Labs	
28 images / device	105 Images / device	
1512 images	5775 images	

Standard Lighting Conditions

Illuminant	сст	Lux	Notes
Outdoor D55 based on ISO 7589	5500K +- 700K	1000 +- 100	Tunable LED or filtered halogen Must include NIR for color uniformity test.
Indoor TL84 Fluorescent	4100K +- 300K	100 +- 10	Must be fluorescent.
Low Light Tungsten based on ISO 7589	3050K +- 300K	25 +- 2.5	Tungsten or tunable LED - Must include NIR for color uniformity test

SFR - Missed focus

Especially in low light, an autofocus failure can ruin SFR

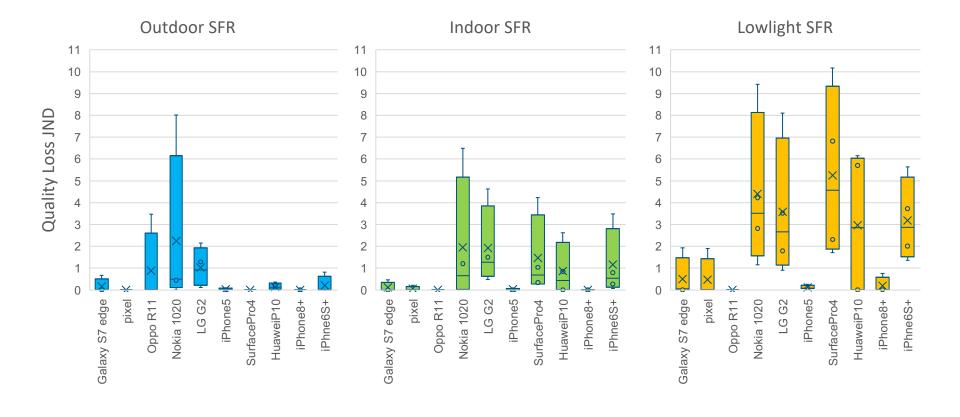


Corrective action:

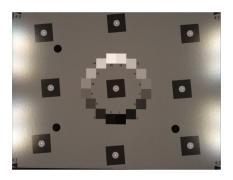
Ensure adequate chart quality by using large 4x sized ISO charts (1225 x 800mm)

Select best of 10 exposures

Add autofocus repeatability score to next standard



SFR: 27.24 JND of Quality Loss

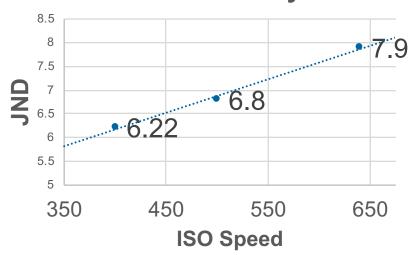

IEEE STANDARDS ASSOCIATION

SFR Variation

Exposure is Scene-Dependent

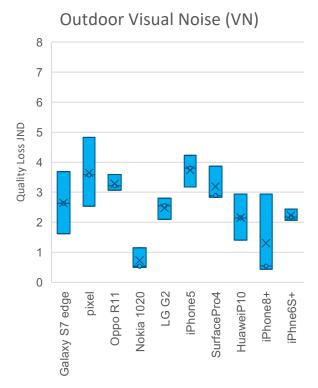
6.22 JND QL **ISO 400** *Specular corruption*

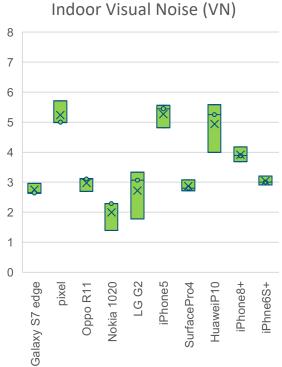
6.8 JND QL **ISO 500**

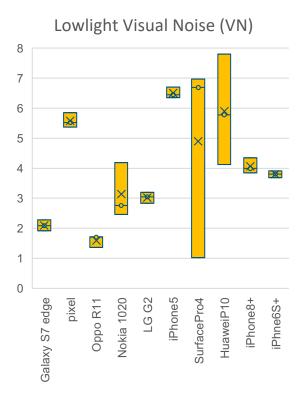

7.90 JND QL **ISO 640** 18% grey background

Reflectance determines luminance Luminance determines ISO speed Impacts visual noise & texture blur

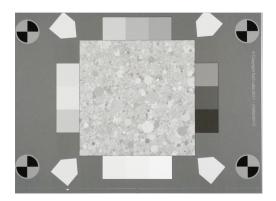
Corrective action:

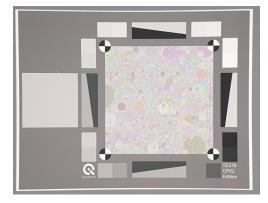

Conform to ISO standard framing Align lab target reflectance

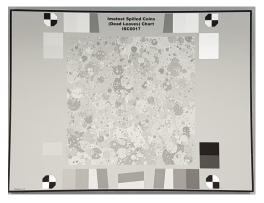

Visual Noise Quality Loss

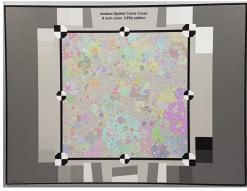


IEEE


Visual Noise Variation



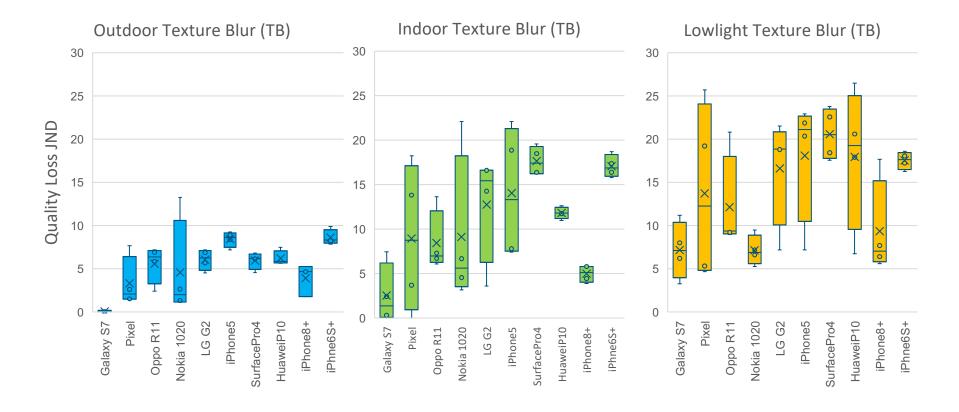

Texture Chart Differences


DxOmark Dead Leaves

Color IE TE276 CPIQ Edition

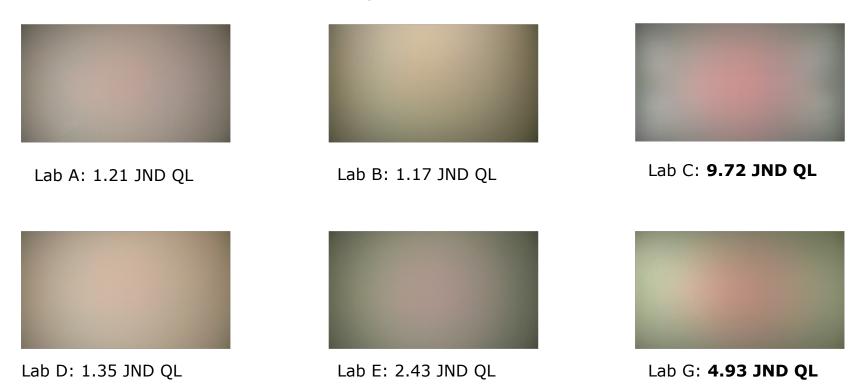
B&W Imatest Spilled Coins

Color Imatest Spilled Coins CPIQ Edition


Different charts have spatial frequency distribution disparities in both luma and chroma

Variation was compounded by reflectance and exposure differences

Need to control chart frequency distribution



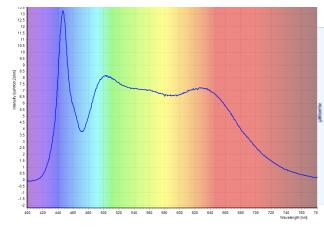
Texture Variation

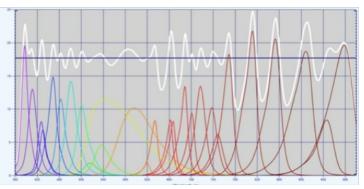
Color Uniformity

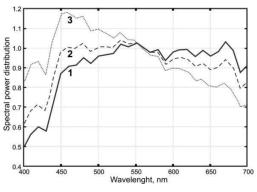
Worst device, Low Light (Tungsten ~25 lux)

Strict tolerance on light source color uniformity required Infrared content is a concern

"Daylight" sources for color uniformity

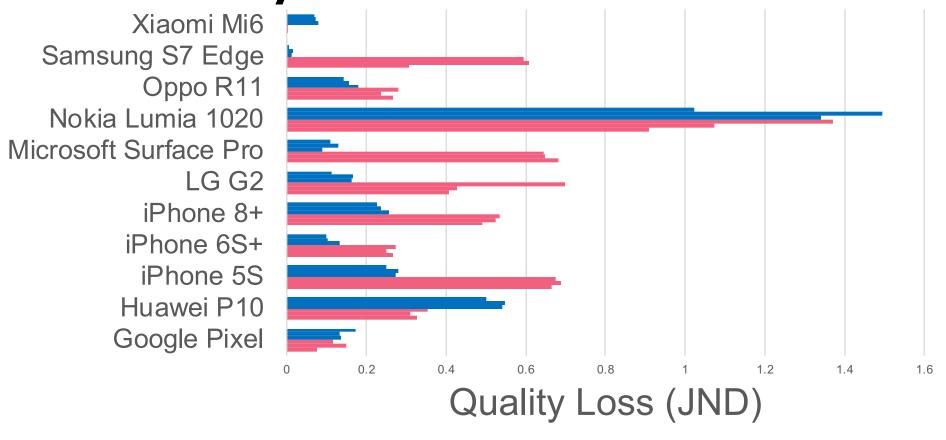

ITI LED Lightbox


Gamma Scientific RS-7


Sol

Phosphor based LED with 5100K CCT drops off around 730nm

32 channel tunable LED simulating up to 1000nm

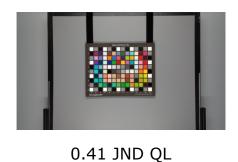


Actual Daylight
1- d50 2-d55 3-d65
(source: Dmitry Tarasov)

IEEE STANDARDS ASSOCIATION

Effect of near infrared on color uniformity

■ No Near-Infrared
■ Near Infrared


Up to 0.6 JND's of color nonuniformity added by including NIR

Chroma Level

0.04 JND QL

Lab F: 0.45 JND QL

Lab F: 0.00 JND QL (**Spot meter**)

Minimize 'non-chart' and 'non-background' regions

Do not touch the screen to trigger spot metering

IEEE CPIQ Test plan document

 Improved test procedure document available

Published

Links to purchase available for purchase at:

http://bit.ly/labvariation

IEEE Camera Phone Image Quality Test Plan

IEEE Camera Phone Image Quality Test Plan

1. Lab environmental conditions

1.1 Environment

The ambient room temperature during the acquisition of the test data shall be 23 °C \pm 2 °C and the relative humidity shall be 50% \pm 30%.

1.1.1 Containment

To prevent any color cast in the test lab it shall be a painted black or 18% Neutral gray.

1.1.2 Illumination

Illumination criteria appears in the following table:

Illuminant	сст	Lux	Notes
D55 based on ISO 7589 [2]	5500 K ± 700 K 4800 K – 6200 K	1000 ± 100 900 - 1100	This can be a tunable LED or filtered halogen. Must include NIR for color uniformity test.
TL84 Flourescent	4100 K ± 300 K	100 ± 10 90 - 110	Must be fluorescent.
Tungsten based on ISO 7589 [2]	3050 K incandescent ±300 K	25 ± 2.5 22.5 – 27.5	This can be tungsten or tunable LED. Must include NIR between 700–800 nm for color uniformity tes

1.1.3 Light placement

Lights shall be placed such that no specular reflection ever appears on the chart. Specular reflection can cause underexposure or otherwise disrupt the accuracy of the test.

1.1.4 Light uniformity

A calibrated illuminance meter shall be used to measure the uniformity.

Uniformity shall be 80% or better across the chart area for all tests except for the color uniformity test where it shall be at least 92%.

Copyright © 2018 IEEE. All rights reserved.

Summary

Black box cameras vary dramatically based on environment and operator interactions

Current standards alone are not strict enough to get alignment between heterogeneous test labs

Detailed procedures can help make results independently reproducible

Documents from IEEE available for purchase at: http://bit.ly/labvariation

Future Work

Publish complete image set

Further analyze the collected images, determine the absolute root causes of the variation

Further tighten testing procedures

Align with ISO 12233 reflectance, and ISO 19567 texture TS chart definition

Correct improper lab setups

Use reference devices to audit labs

Apply Grubbs' test to identify outliers and establish acceptability for a certified lab

Publish device results

CPIQ V2 New Metrics:

Auto Exposure

Autofocus Repeatability

SFR scored across field

Video

- Jitter
- Motion Blur + Texture Loss
- AE Convergence
- AWB Convergence

Documents from IEEE available for purchase at: http://bit.ly/labvariation

