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Abstract— As Machine Vision (MV) and Artificial Intelligence (AI) systems are incorporated to an ever-increasing 

range of imaging applications— from medical image interpretation to controlling autonomous vehicles— it 

becomes vital to ensure that camera measurements provide the best possible prediction of system performance. 

At the present time it is standard practice to measure the two major factors that affect performance— sharpness 

and noise (or Signal-to-Noise Ratio)— as well as several additional factors, including tonal and color response, 

optical distortion, and sensor linearity, then to estimate system performance based on a combination of these 

factors. This estimate is usually based on experience, and is often more of an art than a science. 

We propose a new measurement: Camera information capacity, based on Clause Shannon’s groundbreaking work 

on information theory, published in 1948 and 1949 [1],[2], which is the basis of modern electronic communica-

tions, but is still unfamiliar to imaging scientists. Shannon showed that every communication channel (which can 

be characterized by bandwidth and noise) has an information capacity that determines the maximum rate it can 

transmit data without error. A camera is such a communication channel, albeit with a difference: it transmits data 

to two-dimensional pixels instead of one-dimensional time. Since the algorithms behind Machine Vision operate 

on information rather than pixels, camera information content is critical to system performance. 

Until now camera information capacity has been vaguely defined and difficult to measure. We define it to have 

units of bits per pixel or bits per image at a specified ISO speed, making it easy to compare very different cameras, 

and we describe a convenient method for measuring it using the Imatest program. This measurement can be used 

to solve some important problems, such as finding a camera that meets an information capacity specification with 

the minimum number of pixels— important because fewer pixels means faster processing.  

We present a new image quality measurement — information capacity — that 

combines sharpness, noise, and the effects several types of artifact to form a 

fundamental figure of merit for image quality. It is of particular interest to Machine 

Vision and Artificial Intelligence, but generally applicable to a wide range of imaging. 

 

http://www.imatest.com/
https://en.wikipedia.org/wiki/Machine_vision#Definition
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Information theory background 
Because concepts of information theory are unfamiliar to most imaging engineers, we present a very 
brief introduction. To learn more, we recommend a text such as “Information Theory— A Tutorial 
Introduction” by James V Stone, available on Amazon. Shannon’s 1948 and 1949 papers [1],[2] are highly 
readable. 

What is information? 
Information is a measure of surprise or the resolution of uncertainty. The classic example is a coin flip. 

For a “fair” coin, which has a probability of 0.5 for either a head or tail outcome (which we can designate 

1 or 0). The result of such a flip contains one bit of information. Note that two coin flips have four 

possible outcomes (00, 01, 10,11); three coin flips have eight possible outcomes, etc. The number of 

information bits is log2(the number of outcomes).  

Now, suppose you have a weirdly warped coin that has a probability of 0.99 for a head (1) and 0.01 for a 

tail (0). Little information is gained from the results of a flip. The equation for the information in a trial 

with m outcomes, where 𝑝(𝑥𝑖) is the probability of outcome i and ∑ 𝑝(𝑥𝑖) = 1𝑚
𝑖=1 , is 

𝐻 = ∑ 𝑝(𝑥𝑖) log2

1

𝑝(𝑥𝑖)

𝑚

𝑖−1

 

H is called “entropy”, and is often used interchangeably with “information”. It has units of bits (binary 

digits). Note that this definition is subtly different from the physical memory element called a “bit”. 

For the fair coin, where p(x1) = p(x2) = 0.5, H = 1 bit. For the warped coin, where p(x1) = 0.99 and p(x2) = 

0.01, H = 0.0808 bits. If the results of the warped coin toss were transmitted without coding, each 

channel bit would contain 0.0808 information bits. That would be 

extremely inefficient.  

Claude Shannon was one of the genuine geniuses of the twentieth 

century— renowned among electronics engineers, but little known 

to the general public. The medium.com article, 10,000 Hours With 

Claude Shannon: How A Genius Thinks, Works, and Lives, is a great 

read. There are also nice articles in The New Yorker and Scientific 

American. The 29-minute video “Claude Shannon – Father of the 

Information Age” is of particular interest to the author of this white 

paper because it was produced by the UCSD Center for Memory 

and Recording Research, which he visited frequently in his previous 

career.  

Channel capacity 
Shannon and his colleagues developed two theorems that form the basis of information theory. 

The first, Shannon’s source coding theorem, states that for any message there exists an encoding of 

symbols such that each channel input of D binary digits can convey, on average, close to D bits of infor-

mation. For the above example, it implies that a code can be devised that can convey close to 1 

information bit for each channel bit—a huge improvement over the uncoded value of 0.0808. 

Figure 1. Claude Shannon 

https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://www.newyorker.com/tech/annals-of-technology/claude-shannon-the-father-of-the-information-age-turns-1100100
https://blogs.scientificamerican.com/cross-check/profile-of-claude-shannon-inventor-of-information-theory/
https://blogs.scientificamerican.com/cross-check/profile-of-claude-shannon-inventor-of-information-theory/
https://www.youtube.com/watch?v=z2Whj_nL-x8
https://www.youtube.com/watch?v=z2Whj_nL-x8
https://cmrr.ucsd.edu/
https://cmrr.ucsd.edu/
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The second, known as the Shannon-Hartley theorem, states that the channel capacity C, i.e., the theo-

retical upper bound on the information rate of data that can be communicated at an arbitrarily low 

error rate through an analog communication channel with bandwidth W, average received signal 

power S, and additive white Gaussian noise (AWGN) of power N is 

𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = 𝑊 log2 (

𝑆 + 𝑁

𝑁
) 

This equation is not directly usable because bandwidth W is not well-defined, noise is not white, and it 

applies to one-dimensional systems (functions of time), whereas imaging systems have two dimensions. 

Appendix I shows how to convert the version of the equation for frequency-dependent (colored) noise 

into two dimensions (and back), resulting in Camera image capacity of 

𝐶 = 2𝜋 ∫ log2 (
𝑆(𝑓) + 𝑁(𝑓)

𝑁(𝑓)
) 𝑓 𝑑𝑓 = 2𝜋 ∫ log2 (1 +

𝑆(𝑓)

𝑁(𝑓)
) 𝑓 𝑑𝑓

𝐵

0

𝐵

0

 

Where C is the channel capacity in bits/pixel; B = Nyquist frequency 𝑓𝑁𝑦𝑞 = 0.5 cycles/pixel; 𝑆(𝑓) is the 

signal power spectrum, 𝑁(𝑓) is the noise power spectrum (which we interpret as broadband noise in the 
presence of 𝑆(𝑓)). 

At this point we can hazard a guess as to why camera information capacity has been ignored for cameras. 
For most of its history the hot topic in information theory was the development of efficient codes, which 
didn’t approach the Shannon limit until the 1990s—nearly fifty years after Shannon’s original publication. 
But channel coding is not a part of image capture (though it’s used downstream for image and video 
compression). Also, camera information capacity was not critically important when the primary 
consumers of digital images were humans (though it is related to perceived image quality), but that is 
changing rapidly with the development of new AI and machine vision systems.  

 

The Siemens star measurement 

Selecting the test chart 
For a test chart to accurately measure C, it must fulfill several requirements. 

• It should have a wide tonal range, close to the maximum the camera can reproduce without 
saturating (clipping) well-exposed images. 

• It should be easy to obtain, and, if possible, it should be an ISO standard chart. 

• It should allow the measurement of 𝑆(𝑓) and 𝑁(𝑓) at the same location. This is important for 
two reasons. 

▪ because many cameras, particularly consumer cameras, use nonuniform and/or non-
linear image processing to improve image appearance. The most common variety is the 
bilateral filter, which sharpens the image (boosts high spatial frequencies) near sharp 
features like edges, but reduces noise (i.e., smooths or lowpass filters the image) away 

from sharp features. This can increase the measured value of C while actually removing 
information from the image. 

https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Information_rate
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
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▪ because several types of artifact are absent and have little or no impact on C when 𝑆(𝑓) 
and 𝑁(𝑓) are measured at separate locations.  

After considering several chart types we decided on the sinusoidal Siemens star, which is a part of the 
ISO-12233-2014/2017 standard. The beauty of the Siemens star is that it can be divided into several 
radial and angular segments, where the frequency in each segment of average radius r is 𝑓 =
𝑛𝑐𝑦𝑐𝑙𝑒𝑠/2𝜋𝑟. This allows 𝑆(𝑓) and 𝑁(𝑓) to be conveniently calculated by the method of Appendix II. 

The contrast of the star chart should be as close as possible to 50:1 (the minimum specified in the 
standard; close to the maximum achievable with matte media). Higher contrast can make the star image 
difficult to linearize in some black-box testing cases. Lower contrast is acceptable, but should be reported 
with the results. The chart should have 144 cycles for high resolution systems, but 72 or fewer cycles is 
sufficient for low resolution systems. The center marker (quadrant pattern), used to center the image for 
analysis, should be 1/20 of the star diameter. 

Photograph the chart 

Full instructions on photographing the chart and analyzing it in Imatest are found on Star Chart. 
The background to the measurement is on Shannon Information Capacity. 

Acquire a well-exposed image of the Siemens star in even, glare-free light. Exposures should be reaso-
nably consistent when multiple cameras are tested. The mean pixel level of the linearized image inside 
the star should be in the range of 0.16 to 0.36 for normalized image data in the range [0,1], where 0 is 
the response to no light and 1 is the level where pixels saturate. 

The center of the star should be located as close as possible to the center of the image to minimize 
measurement errors caused by optical distortion (if present). 

The size of the star in the image should be set so the maximum spatial frequency, corresponding to the 
minimum radius rmin, is larger than the Nyquist frequency fNyq, and, if possible, no larger than 1.3 fNyq, so 
sufficient lower frequencies are available for the channel capacity calculation. This means that a 144-
cycle star with a 1/20 inner marker should have a diameter of 1400-1750 pixels and a 72-cycle star should 
have a diameter of 700-875 pixels. For high-quality inkjet printers, the physical diameter of the star 
should be at least 9 (preferably 12) inches (23 to 30 cm). 

Consistent exposure (by which we mean consistent signal levels inside the Siemens star 
image) is critically important when comparing cameras. The levels are shown below Imatest 
results plots and in the JSON and CSV output. An example from Figure 3 is   Mean levels:  

linear = 0.181, pixel = 0.431 , showing the linearized and original gamma-encoded pixel levels 
inside the Siemens star, normalized to 1. 

The reason consistency is so important is that signal S is proportional to the exposure, but 

noise N consists of a fixed component (from electronic noise and other sources) and a 

variable component (from shot, i.e., photon noise), which varies as the square root of S. 

Hence SNR and information capacity C are sensitive to exposure, as shown in Figure 8. 

https://www.iso.org/standard/71696.html
http://www.imatest.com/docs/starchart/
http://www.imatest.com/docs/shannon/
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Figure 2. Typical image of Siemens star, framed so the maximum frequency is slightly above fNyq. 

Other features may surround the chart, but the average background should be close to neutral gray (18% 
reflectance) to ensure a good exposure (it is OK to apply exposure compensation if needed). Figure 2 
shows a typical star image in a 24-megapixel (4000×6000 pixel) camera. 

 

Information capacity results 
We tested three cameras that produced both raw and JPEG output for information capacity C as a 
function of Exposure Index (ISO speed setting).  

Table 1. Cameras used in the tests 

1. Panasonic 
Lumix LX5 

An older (2010) compact 10.1-megapixel camera with a 2.14 µm pixel pitch 
and a Leica f/2 zoom lens set to f/4. 

2. Sony A6000 A 24-megapixel micro four-thirds camera with a 3.88 µm pixel pitch and a 
60mm Canon macro lens set to f/8 

3. Sony A7Rii A 42-megapixel full-frame camera with a Backside-Illuminated (BSI) sensor 
with 4.5 µm pixel pitch and a 90mm f/2.8 Sony macro lens set to f/8 

 

We captured both JPEG and raw images, which were converted to 24-bit sRGB TIFF images (designated as 
raw/TIFF) with no sharpening or noise reduction and gamma ≌ 2.2. Results with 48-bit Adobe sRGB 
conversion were nearly identical. 

Figure 3 illustrates results for the 24-megapixel camera 2 raw/TIFF image at ISO 100. Signal voltage 

(√𝑆(𝑓)), noise voltage (√𝑁(𝑓)), and (𝑆(𝑓) + 𝑁(𝑓))/𝑁(𝑓) in dB are all calculated from the sinusoidal 

star pattern. Note that 𝑀𝑇𝐹(𝑓) = √𝑆(𝑓) 𝑆(0)⁄ . Noise 𝑁(𝑓) is more accurate than for flat patches 
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(found in standard test charts such as ISO 14524, ISO 15739), especially in the presence of widely-used 
nonlinear (bilateral filtering), which may aggressively reduce noise more in smooth areas. 

 

Figure 3. Signal voltage, 10x noise voltage, and (S+N)/N plot for 24 megapixel Camera 2, TIFF from raw, 
ISO 100, 32 frequencies, 32 radial segments. Summary results are shown below the plot. 

JPEG vs. minimally-processed RAW images 
Figure 4 shows results from the raw/TIFF images (solid lines) and JPEG images (dotted lines) as a function 
of ISO speed. The frequency dependence of the raw/TIFF results are consistent for the three cameras. 
The improvement between cameras 2 and 3 is much greater than expected from the ratio between pixel 
areas because camera 3 has a Backside-Illuminated (BSI) sensor (a greatly improved technology). 

The key result of Figure 3 is a single number: Shannon information capacity = 3.65 bits per pixel 
at ISO 100 (an excellent value; typical of high-quality cameras at low ISO speeds).  

This number can be used to compare different cameras operating under different conditions 
(ISO speed, light level, aperture, etc.) and to quantify a camera’s performance for Artificial 
Intelligence systems. 
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Figure 4. Information capacity for the three cameras as a function of Exposure Index: 
solid lines for TIFFs derived from raw images; dotted lines for JPEGs. 

To understand these results we need to look at the individual results. 10-megapixel Camera 1 at ISO 80 is 
a good example because it has the strongest sharpening of the three cameras tested. 

 

Figure 5. Shannon capacity plot, showing Signal voltage (magenta), 10x noise voltage (cyan), and (S+N)/N (brown) 
for 10-megapixel Camera 1 @ ISO 80. Raw/TIFF (left), JPEG (right). Note that 𝑀𝑇𝐹(𝑓) = 𝑆(𝑓) 𝑆(0)⁄  (curve) 

Figure 5 illustrates how the sharpening boost (the cause of the JPEG signal peak around 0.15 C/P) also 
boosts the noise, degrading (𝑆(𝑓) + 𝑁(𝑓))/𝑁(𝑓), leading to reduced C. The strong spatial-domain 
sharpening of the JPEG is visible on the slanted edge located just to the left of the star. 

The striking result in Figure 4 is that sharpened JPEG images generally have lower information 
capacities than unsharpened raw/TIFF images (except at the highest ISO speeds, where JPEG 

image processing is different: reduced sharpening and increased noise reduction distorts C ).  
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To further illustrate the effects of sharpening, which increases noise as well as high frequency amplitude, 
we ran several simulations on the 24-megapixel raw/TIFF camera 2 image (Figure 3). The baseline image 
has no added sharpening or noise reduction. For the others, USM is Unsharp Mask; Rn = sharpening 
radius; An = sharpening amount. Gaussian g is Gaussian (blur) filter with parameter g. 

Table 2. Capacity losses for sharpening & noise reduction 

Image C MTF50 (c/p) MTF50P(c/p) 
Baseline 3.69 0.22 0.229 

USM R2 A1 3.65 0.345 0.323 

USM R1 A2 3.63 0.407 0.397 

Gaussian 0.7 2.99 0.162 0.168 

Gaussian 1.0 2.25 0.138 0.143 

USM R2A1, Gaussian 0.7 3.06 0.241 0.239 

Visual comparison of images with similar information capacity 
Using the results in Figure 4, we selected images from two different cameras with similar information 
capacities (1.7 bits/pixel): camera 1 (2.14 µm pixel pitch) at ISO 1600 and camera 3 (4.5 µm BSI pixel 
pitch) at ISO 12800.  

 

 

Camera 1, ISO 1600                Camera 3, ISO 12800 

Figure 6. Comparison of raw/TIFF images from two different cameras with 
similar information capacity (≌1.7), significantly degraded from ISO 100. 

Since sharpening boosts noise along with signal, it does not increase information capacity C. In 

general, the measured value of C cannot be increased by any uniform image processing. 

https://en.wikipedia.org/wiki/Data_processing_inequality
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Noise appears very similar in the upper images, and sharpness and artifacts are similar in the lower 
images.  

 

Artifacts 
A unique property of the Siemens star information capacity measurement method is that it measures the 
image quality loss from several types of artifacts that can arise from image capture or image processing. 

Clipping (saturation) artifacts 
Clipping (or saturation) takes place when image pixels reach 
their limit, then get abruptly chopped off. It can occur in 
strongly overexposed images (Figure 7, on the right) or in 
images with excessive sharpening. Information is absent in 
clipped regions, but the sharp corner contains high 
frequency energy that exaggerates slanted-edge MTF 
measurements. Clipping is illustrated in Figure II-3 for an 
overexposed star. 

We studied the effects of clipping using several images from 
10-megapixel camera 1, which had the greatest software 
sharpening of any of the cameras tested. We used six exposure settings, from nominal-3 f-stops (EV) to 
nominal+2, saving each as JPEG and raw files. Shannon information capacity as a function of exposure is 
shown in Figure 8. 

 

Figure 8. Shannon information capacity vs. Exposure error in f-stops. 

Calculated information capacity increases with exposure up the point where clipping starts. The reason is 
that Signal-to-Noise ratio increases with exposure: signal increases linearly, but electronic noise is 
constant and shot (photon) noise increases with the square root of exposure. This is why consistent 
exposure is important when comparing different cameras.  

The JPEG and raw/TIFF curves have a different shape because the JPEG images have reduced sharpening 

at the low exposures, while the minimal image processing for the raw/TIFF images is unchanged.  

Figure 7. Clipping on a slanted-edge 
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Figure 9. Portions of two JPEG images used in Figure 8. 
Left: Rel. exposure = 0 (nominal); Right: Relative exposure = +2 (overexposed & clipped). 

Clipped (overexposed) images have reduced information capacity measurements because clipped regions 
contain no information. Because they have zero noise, they are removed from the calculation using the 

method described in Appendix II. The reduction in C is somewhat less than expected, most likely because 

the equation for C assumes a linear system, and is not accurate for highly nonlinear systems.  

Demosaicing artifacts (mostly aliasing) 
Aliasing— low frequency artifacts such as moiré fringing that can appear when the signal reaching the 
image sensor has significant energy above the Nyquist frequency, 𝑓𝑁𝑦𝑞 (0.5 Cycles/Pixel)— can degrade 

image quality. Images from Bayer sensors can have significant color aliasing because the Nyquist 
frequency of the red and blue channels is half that of the sensor as a whole.  

The amount of aliasing is strongly dependent on the demosaicing algorithm used by the raw converter.  
Simple algorithms such as bilinear demosaicing have severe aliasing. Most modern cameras use 
sophisticated algorithms that take advantage of detail from all color channels to construct the image in 
each individual channel. 

We examined the effects of demosaicing using the four algorithms available in dcraw: bilinear (a simple 
form of linear interpolation with notoriously low quality), VNG, PPG, and AHD (in order of increasing 
quality) and the recommended AMaZE algorithm in RawTherapee, which offers many additional 
algorithms. Our measurements correlated with the descriptions of algorithm quality. 

Table 3. Comparison of demosaicing algorithms 

Demosaicing algorithm C (bits/pixel) MTF50P (C/P) 
dcraw bilinear 1.8 0.191 

dcraw VNG 2.51 0.219 

dcraw PPG 3.14 0.229 

dcraw AHD 3.69 0.229 

RawTherapee AMaZE 3.95 0.236 

 

Information capacity C is a far more sensitive measure of demosaicing quality than MTF50P. 

The enlarged images below compare three of the algorithms. The orange circle is 𝑓𝑁𝑦𝑞. The cyan circles 

are at 0.75𝑓𝑁𝑦𝑞 and 0.5𝑓𝑁𝑦𝑞.  The two highest quality algorithms (Figure 10) are difficult to distinguish, 

but artifacts are clearly visible with bilinear demosaicing (Figure 11), which also has reduced sharpness.  

https://www.dechifro.org/dcraw/
https://rawtherapee.com/
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Figure 10. RawTherapee AMaZE demosaicing (left), 
dcraw Adaptive Homogeneity-Directed (AHD) demosaicing (right). 

 

Figure 11. Bilinear demosaicing (notoriously low quality) 

To summarize, information capacity C is an excellent way of evaluating demosaicing algorithms, which 
primarily differ in the amount of aliasing.  

Data compression 
We studied the effects of data compression by loading a high quality raw/TIFF image acquired at ISO 100 
from 24-megapixel camera 2 into Irfanview, then saving it as JPEG and JPEG 2000 (JP2) files at quality 
levels from 10 to 100. Information capacity is a strong function of quality level for both file types.  

 

http://www.irfanview.com/
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Figure 12. Information capacity C vs. quality level. 

This agrees well with [3] and [4], where several metrics for evaluating JPEG data compression were 
tested. The conclusion was, “the JPEG ‘quality factor’, used to specify the compression level, was found 
to have the best performance when predicting the results of subjective tests.” 

Figure 13 shows information capacity as a function of file size for an original (uncompressed) file size of 
6024×4024×3 Bytes = 72.7 MB. JPEG 2000 seems to be the clear winner here. The general trends are 
similar to results in section 4.7 of [5], which is based on subjective evaluations of a set of images.  

 

Figure 13. Information capacity C vs. file size in MB. Original file size = 72.7 MB (6024×4024×3). 
Compression ratio is for comparison of results with [5], section 4.7. 

We also found that MTF50P, the spatial frequency in Cycles/Pixel where MTF drops to half its peak value, 
correlates poorly with JPEG and JPEG 2000 quality. 

These results illustrate the potential of using information capacity C for evaluating image compression 
algorithms. 

Figure 14 illustrates JPEG image degradation at quality levels of 70 and 50%.  

  

Figure 14. 70% JPEG quality level (left), showing some contrast loss near fNyq (the orange circle). 
50% JPEG quality loss (right), showing significant contrast loss above 0.75 fNyq (the thin cyan circle). 
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Artifact summary 
The slanted-edge method is effective in measuring the effect of three types of artifact (clipping, aliasing 

(from demosaicing), and data compression) on image quality. This was a surprise benefit of measuring 

noise in the presence of the signal. When noise is measured in flat patches (which is quite widespread), 

few artifacts are present to degrade image quality. 

Additional details 
A few additional details need to listed. They are described in full detail on Shannon information capacity. 

Information capacity over the image field 

The results we have presented thus far are information capacity Cstar for the region of the star near the 

center of the image, expressed in units of bits per pixel at a specified ISO speed. The total information 

capacity Ctotal for the image field must take variations in C into account. Cstar can be found by one of 

two methods. 

1. Use a grid of Siemens star charts. Such a grid is illustrated in the ISO 2014/2017 standard. 

𝐶𝑡𝑜𝑡𝑎𝑙 = mean(𝐶𝑠𝑡𝑎𝑟) × megapixels  

2. Use a chart with multiple slanted-edges, preferably one of the four Imatest charts with 

automatic Region of Interest (ROI) detection. This method (details on the Shannon information 

capacity page) uses a quantity called “star-equivalent information capacity,” CstarEq — an 

approximation to the information capacity that would have been calculated from Siemens stars 

(not recommended as a primary calculation). The equation for the total camera information 

capacity based on CstarEq measured at multiple locations in the image is 

𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐶𝑠𝑡𝑎𝑟(center) × mean(𝐶𝑠𝑡𝑎𝑟𝐸𝑞)

𝐶𝑠𝑡𝑎𝑟𝐸𝑞(center)
× megapixels 

Color channels 
Most of the results in this paper are for the luminance (Y) channel, where Y = 0.2125∙R + 0.7154∙G 
+0.0721∙B. The separate results for the R, G, and B channels are also of interest. For the Camera 2 

raw/TIFF image, which has C = 3.69 bits/pixel for the Y-channel, CR = 2.90, CG = 3.53, and CB = 3.07 for 

the R, G, and B channels, respectively. C is higher for the Y-channel because the uncorrelated noise from 
the R, G, and B is combined.  

Total 𝐶 = 𝐶𝑅 + 𝐶𝐺 + 𝐶𝐵 is nearly triple when the R, G, and B color channels are analyzed separately. But 
we can now think of a pixel as having 24 (RGB) bits instead of 8. 

In the future we plan to analyze chroma channels for information capacity C. The most likely candidates 

are CB and CR (from YCBCR), which are derived from B-Y and R-Y (where Y is mostly green). We will use 
special charts (most likely stars with R-G and B-G patterns).  

Future work 
▪ Standardize the camera information capacity measurement. Imatest works with several stan-

dards committees, including ISO TC42, IEEE P1958 (Camera Phone Image Quality), and IEEE 
P2020 (Automotive Image Quality). This will be a challenging process because camera informa-

tion capacity C is new and unfamiliar to most committee members.  

http://www.imatest.com/docs/shannon/
http://www.imatest.com/docs/shannon/
http://www.imatest.com/docs/shannon/
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▪ Do more to correlate information capacity C with the subjective visual appearance of a variety of 
images, without and with additional image processing, beyond the indirect correlations in the 

section on Data compression. We may extend the model of C to include viewing conditions and 
the human visual system to obtain a “visual information capacity”, analogous to visual noise or 
acutance. 

▪ Correlate C with performance of Machine Vision and Artificial Intelligence systems.  

Summary 
Camera information capacity C has great potential value as a figure of merit for evaluating camera image 
quality because it combines the effects of sharpness, noise, and several types of artifact. But until 
recently it was not easy to measure.  

The method presented here makes it convenient to measure information capacity C, signal S(f) 
(proportional to MTF), and noise N(f) from images of Siemens star test charts.  

We once again stress that camera information capacity is a novel measurement. Only one aspect is 
traditional—measuring signal power 𝑆(𝑓) = 𝑀𝑇𝐹(𝑓)2 from the Siemens star. The rest—calculating the 
noise power 𝑁(𝑓) from the Siemens star and applying 𝑆(𝑓) and 𝑁(𝑓) to the two-dimensional form of 
the Shannon capacity equation (simplified to one dimension) are entirely new.  

 

 

Appendix I: Transforming the Shannon-Hartley equation from one to two dimensions 

and back 
The Shannon-Hartley equation for frequency-dependent (colored) noise, first presented in 1948 [2], is 

𝐶 = ∫ log2 (1 +
𝑆(𝑓)

𝑁(𝑓)
)

𝐵

0

𝑑𝑓 = ∫ log2 (
𝑆(𝑓) + 𝑁(𝑓)

𝑁(𝑓)
)

𝐵

0

𝑑𝑓 

Where C is the channel capacity in bits/pixel; B = Nyquist frequency 𝑓𝑁𝑦𝑞; 𝑆(𝑓) is the signal power 

spectrum, 𝑁(𝑓) is the noise power spectrum. 

Despite its unfamiliarity, the units of camera information capacity— 

information bits per pixel (or total image) for a specified ISO speed— are 

intuitive and easy to understand. We believe that it is a better indicator 

of a camera’s potential image appearance (after tuning) than any 

existing measurement.  

In the future we would like to see information capacity — either bits per 

pixel or megabits total at specified ISO speeds (exposure indices) or 

light (lux) levels — become an integral part of a standard camera 

specifications. 
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This equation applies to one-dimensional measurements (usually signal as a function of time), whereas 
images have two dimensions, i.e., pixels. To overcome this limitation, we need to express C as a double 
integral. 

𝐶 = ∬ log2 (
𝑆(𝑓𝑥, 𝑓𝑦) + 𝑁(𝑓𝑥, 𝑓𝑦)

𝑁(𝑓𝑥, 𝑓𝑦)
) 𝑑𝑓𝑥𝑑𝑓𝑦

𝐵

0

 

where 𝑓𝑥 and 𝑓𝑦 are frequencies in the x and y-directions, respectively. In order to evaluate this integral, 

we transform x and y into polar coordinates r and θ. 

𝐶 = ∫ ∫ log2 (
𝑆(𝑓𝑟 , 𝑓𝜃) + 𝑁(𝑓𝑟 , 𝑓𝜃)

𝑁(𝑓𝑟 , 𝑓𝜃)
) 𝑓𝑟 𝑑𝑓𝑟 𝑑𝑓𝜃

𝐵

0

2𝜋

0

 

Since 𝑆(𝑓𝑟, 𝑓𝜃) and 𝑁(𝑓𝑟, 𝑓𝜃) are only weakly dependent on θ, the double integral can be rewritten in 
one-dimension. 

𝐶 = 2𝜋 ∫ log2 (
𝑆(𝑓) + 𝑁(𝑓)

𝑁(𝑓)
) 𝑓 𝑑𝑓

𝐵

0

 

This resembles the original Shannon-Hartley equation, except for the factor of 2π in outside the integral 
and f inside the integral.  

 

Appendix II: Measuring signal and noise power from the Siemens Star. 
Because nonuniform image processing is so commonly applied in consumer digital imaging systems, it is 
highly desirable to measure signal and noise at the same location in the image, i.e., to measure noise in 
the presence of signal. We have developed a method to accomplish this with the well-known Siemens 
Star chart, which is a part of the  ISO-12233-2014/2017 standard.  

To measure signal and noise at the same location, we use an image of a sinusoidal Siemens-star test chart 

consisting of ncycles total cycles, which we analyze by dividing the star into k radial segments (32 or 64), 
each of which is subdivided into m angular segments (8, 16, or 24) of length Pseg. The number sine wave 
cycles in each angular segment is 𝑛 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠/𝑚.  

 

Figure II-1. 144-cycle Siemens star pattern. 

https://www.iso.org/standard/71696.html
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For radius r in pixels, the spatial frequency in Cycles/Pixel is 𝑓 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠/2𝜋𝑟. This means that the 

Nyquist frequency, fnyq = 0.5 C/P is located at r = 46 pixels for a 144-cycle star and 23 pixels for a 72-cycle 
star [6]. 

We calculate the ideal (pure sine wave + second harmonic) signal sideal(𝜑) for each segment from the 
actual (noisy) input signal sinput(𝜑), using Fourier series coefficients aj and bj. 

𝑠𝑖𝑑𝑒𝑎𝑙(𝜑) = ∑ 𝑎𝑗 cos (
2𝜋𝑗𝑛𝜑

𝑃𝑠𝑒𝑔

) + 𝑏𝑘 sin (
2𝜋𝑗𝑛𝜑

𝑃𝑠𝑒𝑔

)
2

𝑗=1
 

where 

𝑎𝑗 =
2

𝑃
∫ 𝑠𝑖𝑛𝑝𝑢𝑡(𝑥) cos (

2𝜋𝑗𝑛𝑥

𝑃𝑠𝑒𝑔
)

𝑃
𝑑𝑥 ,       𝑏𝑗 =

2

𝑃
∫ 𝑠𝑖𝑛𝑝𝑢𝑡(𝑥) sin (

2𝜋𝑗𝑛𝑥

𝑃𝑠𝑒𝑔
)

𝑃
𝑑𝑥 

The second harmonic term (j = 2) term improves results for JPEG images from cameras, which frequently 
have “shoulders” (regions of reduced contrast) in their tonal response curves, making them difficult to 
linearize with a simple gamma formula. 

The minimum star frequency is 𝑓𝑚𝑖𝑛 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠/2𝜋𝑟𝑠𝑡𝑎𝑟 where rstar is the radius of the star in pixels. The 

contribution of frequencies below fmin is calculated by extrapolation— by assuming that 𝑆(𝑓)  =  𝑆(𝑓𝑚𝑖𝑛) 
and 𝑁(𝑓)  =  𝑁(𝑓𝑚𝑖𝑛) for 𝑓 < 𝑓𝑚𝑖𝑛. This assumption is reasonable for 𝑁(𝑓) but somewhat pessimistic 

for 𝑆(𝑓). However, the effect on C is minimal because of the presence of f in the integrand of the equa-

tion for C. 

 

Figure II-2. Illustration of 𝑠𝑖𝑛𝑝𝑢𝑡(𝜑) (blue), 𝑠𝑖𝑑𝑒𝑎𝑙(𝜑)) (brown), 

and noise 𝑁(𝜑) = 𝑠𝑖𝑑𝑒𝑎𝑙(𝜑) − 𝑠𝑖𝑛𝑝𝑢𝑡(𝜑)  (green). 

The spatial domain noise in each segment is 

𝑁(𝜑) = 𝑠𝑖𝑑𝑒𝑎𝑙(𝜑) − 𝑠𝑖𝑛𝑝𝑢𝑡(𝜑) 

The mean signal power used to calculate C is 𝑆(𝑓) = mean(𝑎𝑛
2 + 𝑏𝑛

2)/2 for all angular segments at 
radius r (where 𝑓 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠/2𝜋𝑟). Frequency domain noise power 𝑁(𝑓) is the mean of the variance (σ2) 

of the middle 80% of N(φ) for each angular segment (there can be irregularities near the ends). 

https://en.wikipedia.org/wiki/Fourier_series#Definition
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Saturation (clipping)— Clipped (saturated) regions of an image contain no information as well as no 
noise, but have a very high Signal-to-Noise ratio. Since this can lead to erroneous results, saturated 

regions must be removed before calculating the noise power (the variance of N(φ)). For minimum and 

maximum allowable pixel levels pmin and pmax (typically 0 and 1), the locations specified below should be 
used for calculating the noise power (the variance) of the segment 

𝑁′(𝜑) = 𝑁(𝜑)  where  𝑠𝑖𝑛𝑝𝑢𝑡(𝜑) > 𝑝𝑚𝑖𝑛 + 𝜀  and  𝑠𝑖𝑛𝑝𝑢𝑡(𝜑) < 𝑝𝑚𝑎𝑥 − 𝜀 ;    ε is a small margin. 

Figure II-3 is a 3D pseudocolor plot of a small pie-shaped segment of the chart image, transformed in to a 
rectangular area, illustrating the appearance of saturation (clipping) for an overexposed image. 

 

Figure II-3. 3D surface plot of overexposed image, illustrating strong clipping. 

The Shannon information capacity C of this image (Figure 8) is 3.44 bits/pixel. For a comparable image, 
slightly overexposed, but with no saturation, it is 3.93 bits/pixel. C cannot be measured accurately in the 
presence of saturation because the equations assume a nearly linear system. Nevertheless, it is lower 
than the unsaturated image (as it should be), unlike with slanted-edges. We have seen instances where 
clipping may have been deliberately introduced for pictorial effect, but it should be avoided in 
applications where information content is important. 
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