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Abstract 

Noise is an extremely important image quality factor. Camera 

manufacturers go to great lengths to source sensors and develop 

algorithms to minimize it. Illustrations of its effects are familiar, 

but it is not well known that noise itself, which is not constant over 

an image, can be represented as an image. 

Noise varies over images for two reasons. (1) Noise voltage in raw 

images is predicted to be proportional to a constant plus the 

square root of the number of photons reaching each pixel. (2) The 

most commonly applied image processing in consumer cameras, 

bilateral filtering [1], sharpens regions of the image near con-

trasty features such as edges and smooths (applies lowpass filter-

ing to reduce noise) the image elsewhere. 

Noise is normally measured in flat, uniformly-illuminated patches, 

where bilateral filter smoothing has its maximum effect, often at 

the expense of fine detail. Significant insight into the behavior of 

image processing can be gained by measuring the noise through-

out the image, not just in flat patches.  

We describe a method for obtaining noise images, then illustrate 

an important application— observing texture loss— and compare 

noise images for JPEG and raw-converted images. The method, 

derived from the EMVA 1288 analysis of flat-field images, requires 

the acquisition of a large number of identical images. It is some-

what cumbersome when individual image files need to be saved, 

but it’s fast and convenient when direct image acquisition is 

available. 

Introduction 
Noise is typically measured in flat patches of test charts that 

include grayscale patterns. While this is convenient and useful for 
calculating Signal-to-Noise Ratio (SNR), it has several short-
comings. In processed images, noise in flat patches can be 
strongly affected by software noise reduction, leading to errone-
ous dynamic range measurements. There is no information on 
what happens to noise in the presence of image features— 
texture, edges, etc. It is well known that the human eye is much 
less sensitive to noise in the presence of detail than in smooth 
areas (this is why bilateral filtering is effective), but what about 
machine vision? 

In a recent paper [2], we addressed the issue of measuring 
noise in the presence of a signal for the Siemens star pattern, 
where the ideal sinusoidal image can be inferred from a noisy 
acquired image using Fourier analysis. Noise is the difference 
between the actual and ideal image. This allows MTF to be 
measured in the same location as noise, partially overcoming the 
effects of bilateral filtering and enabling a camera information 
capacity calculation. 

To overcome the chief limitation of this technique, which 
only works with the Siemens star, we have developed a general 
method for measuring noise anywhere in any image based on 
temporal noise and Photo Response Nonuniformity (PRNU) mea-
surements in the EMVA 1288 standard [3]. 

Method 
To measure noise throughout an image, i.e., to obtain an 

image of the noise itself, either (a) capture a set of L identical but 
independent images, saving them in L files, or (b) capture L 
images by direct acquisition (if available), which can be extreme-
ly efficient since only two image arrays need to be saved. L should 
be at least 32; 128 is even better. 

The mean of each individual pixel in the set of L captured 
images is 
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The temporal noise variance (noise power) of each pixel is 
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(2) 

In this form, the σs2 equation is cumbersome to evaluate, but 

it can be simplified so that μs and σs2 can be rapidly calculated 
from just two arrays: the sum and sum of squares of pixels in the 
set of L images. 
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The key observation about this result is that since μs and σs2 
are calculated for each pixel in the image, they form images 
themselves.  

μs is the more familiar of the two: it is the averaged image, 
whose Signal-to-Noise Ratio (SNR) improves by 3 log2 𝐿 decibels 
(dB) for L captures. Signal averaging is recommended for analy-
zing images of charts that are highly sensitive to noise, especially 
Dead Leaves/Spilled Coins charts or the Log Frequency contrast 
chart (which varies spatial frequency horizontally and contrast 
vertically in order to measure the effects of image processing). 

The noise image is derived from temporal noise variance σs2, 
which is less familiar. We use its square root, RMS noise voltage 

σs (which is used in SNR calculations) as the noise image because 

it has lower contrast than σs2, making it better suited for visuali-
zation. 

  



 

 

Results 
Figures 1 and 2 illustrate the mean μs and RMS temporal 

noise σs from L = 128 samples for a portion of a modified ISO 
12233:2017 chart, acquired by an inexpensive 1920x1080 HD 
USB camera. “Halos” from strong edge sharpening are visible in 
Figure 1. As expected, noise (the light bands in Figure 2) is 
highest near sharp, contrasty features. 

 

 

Figure 1. Crop of the averaged the image of modified ISO 
12233:2017 chart. 

Before we present noise images, we need to explain the chal-
lenges and tradeoffs in displaying them.  

Noise images displayed with their original scaling (the same 
as the original image) are usually too dark for visual interpre-
tation. If they are lightened, they make visual sense, but quanti-
tative information (the actual noise levels) is lost. If they are 
displayed as pseudocolor images, quantitative information is 
maintained but since a single channel (often a composite channel 
like the average of R, G, B) must be selected, color information is 
lost. 

Figures 2 and 5 are lightened noise images that contain only 
qualitative information. 

 

 

Figure 2. Noise image σs for crop in Fig. 1. 
L = 128 acquisitions 

 

Texture measurement quality 
Noise images can be used to estimate the reliability of dead 

leaves (spilled coins) texture blur measurements. In traditional 
measurements such as the IEEE 1858 Standard for Camera Phone 
Image Quality,  

𝑀𝑇𝐹 = √𝑃𝑆𝐷(𝑖𝑚𝑎𝑔𝑒)/𝑃𝑆𝐷(𝑡𝑎𝑟𝑔𝑒𝑡).  

(4) 
In older texture calculations, PSD(noise), measured in a flat 

area near the active pattern, was subtracted from PSD(image) 
[4], but this technique is being abandoned in recent drafts of the 
revised standard [5] because of the growing realization that it 
fails in the presence of bilateral filtering. Signal averaging is now 
recommended for removing the effects of noise [6]. 

A key problem with the texture MTF calculation is that it is a 
bulk measurement that includes both sharpened and lowpass-
filtered areas, i.e., it provides no information about spatially-
dependent details of texture loss.  

Bilateral filters have a threshold that determines the boun-
dary between locally sharpened areas, where MTF is boosted, 
and locally smoothed areas, where MTF is decreased and fine 
texture is lost. In Spilled Coins (Dead Leaves) charts, which have 
a maximum contrast of 3:1, this threshold can be below the 
maximum pattern contrast, which can make the image proces-
sing highly nonuniform. This situation is illustrated by comparing 
Figure 3, from the inexpensive USB camera, with Figure 4, from a 
high-quality high-resolution reference camera (similar to the ori-
ginal chart design). In Figure 3, a few contrasty edges are sharp, 
but most of the fine texture is absent.  

 

 

Figure 3. Spilled coins image crop μs from a 2 megapixel 
HD USB camera. 



 

 

 

Figure 4. Dead leaves image crop μs from a high quality 
reference camera. 

 

Figure 5. Noise image σs for dead leaves crop (Figure 3) 
from a USB camera 

In the noise image (Figure 5) corresponding to the USB 
camera image in Figure 3, light areas have relatively high noise, 
corresponding to strong sharpening on contrasty edges, and dark 
areas have relatively low image noise, corresponding to strong 
lowpass filtering and significant texture loss in low contrast 
areas, visible by comparing Figures 3 and 4.  

The MTF of the averaged image μs  (Figure 6) is a misleading 
indicator of good texture response. It gives little indication of the 
true behavior of the camera. 

 

 

Figure 6. MTF of the averaged image, μs 

Raw or minimally-processed images would be expected to 
have relatively uniform image noise. The uniformity can be 
quantified by a histogram of the noise image pixel levels.  
 

 

Figure 7. Histogram of noise image (σs) 

A narrow histogram would indicate a reliable texture MTF 
measurement. A wide histogram (as shown in Figure 7) indicates 
that the MTF is not trustworthy 

Comparing raw and JPEG images 
We acquired four sets of Spilled Coins images from a high 

quality mirrorless camera with a 1-inch sensor (the Panasonic 
Lumix LX-100): JPEG images and raw images converted to TIFF 
files with minimal processing (using dcraw). Images were 
acquired at Exposure Index (EI) 200 and 3200 (where low and 
high noise are expected). Approximately 40 images were 
acquired for each set. 

The JPEG images are highly processed: sharpening and noise 
reduction have been applied. (The JPEGs are high quality, so JPEG 
compression artifacts are minimal.) 

 
 



 

 

 

 

 

Figure 8. JPEG @ EI 200. 
a. (upper) Original image 
b. (middle) Lightened (color) noise image 
c. (lower) Pseudocolor noise image, showing numeric scale 
normalized to 1. 

A low contrast noise image pattern is visible in the JPEG 
Spilled Coins area because noise is relatively low at EI 200, so 
only a small amount of noise reduction was applied. Normalized 
noise values are in the 0.008-0.014 range. The lightened noise 
image shows a curious phenomenon: The dominant noise color is 
the compliment of the dominant image color, e.g., yellowish areas 
have predominantly blue noise. 

 
 

 

Figure 9. Raw/TIFF @ EI 200.  Pseudocolor noise image, 
showing numeric scale normalized to 1. 

Virtually no pattern is visible in the raw/TIFF Spilled Coins 
area, except for a slight repetitive variation caused by aliasing 
(not in the actual image). Noise ranges from 0.007-0.009: lower 
than the JPEG, apparently because the JPEG has significant 
sharpening but minimal noise reduction. 

 Note that the black bar below and to the right of the 
raw/TIFF spilled coins pattern is lighter, i.e., noisier. This is an 
anomaly that does not fit the expected noise model. We have no 
good explanation. 

 

 
Figure 10. JPEG @ EI 3200.  Pseudocolor noise image, 
showing numeric scale normalized to 1. 

A much stronger pattern is visible than for the EI 200 JPEG. 
Noise values range from 0.012-0.024.  

 

 

Figure 11. Raw/TIFF @ EI 3200.  Pseudocolor noise image, 
showing numeric scale normalized to 1 

Noise values range from 0.028-0.036, higher than for the 
JPEG, which has had significant noise reduction applied. As with 
EI 200, the black bar has more noise than expected. 
  



 

 

Noisy pixel defect 
An interesting observation from the mirrorless camera 

(which is several years old, so its sensor may not be “as good as 
new”) is a type of defect pixel that doesn’t reliably show up in hot 
or dead pixel measurements — noisy pixels.  

Such a defect is visible in the JPEG EI 200 pseudocolor image. 
(It is present in all the noise images, but harder to see.) 

Noisy pixels are best measured with flat-field images. 
Noisy pixels are generally not clearly visible in averaged 

images. Since they vary from image to image, they can be difficult 
to measure from single images. The only reliable way to find them 
is to acquire a large number of images, which may be impractical 
in production environments, but can be done with moderate 
efficiency (in a few seconds) if direct image acquisition is 
available. 

Another type of defect we haven’t studied is the stuck pixel, 
which is not necessarily light nor dark. A stuck pixel would have 
zero noise. We haven’t found any in our limited set of images. 

 

 

Figure 12. Noisy pixel defect in highly enlarged JPEG @ ISO 
200 pseudocolor noise image. 

Summary and future work 
The technique presented here allows noise to be measured 

anywhere in an image, not just in flat, uniform areas. Noise itself 
is treated as an image. 

The noise image can be used to examine details of image 
processing such as the operation of bilateral filters— to view 
where they sharpen and where they smooth the image. It can 
potentially reveal sensor and image processing artifacts.  

As we indicated earlier, displaying the noise image presents 
challenges and tradeoffs, largely because noise varies rapidly in 
the areas of greatest interest— near lines, edges, and other 

contrasty features. This problem is intrinsic to any result with 
rapid spatial variation. It is easier to display slowly-varying 
measurements such as signal or noise in flat test chart patches. 
But we are interested in information that is missing in flat 
patches. 

We hope to use noise images to develop improved texture 
loss measurements and perhaps to develop local information 
capacity measurements for optimizing machine vision image 
processing.  

To summarize, noise images are a potentially valuable tool 
for analyzing and optimizing imaging systems. We are confident 
that they will find uses that have yet to be discovered. 
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