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Abstract— As Machine Vision (MV) and Artificial Intelligence (AI) systems are incorporated in an ever-increasing 

range of imaging applications— from medical images to autonomous vehicles— there is a corresponding need for 

camera measurements that can accurately predict the performance of these systems. Until now, the standard 

practice was to separately measure the two major factors— sharpness and noise (or Signal-to-Noise Ratio) as well 

as several additional factors, including tonal and color response, optical distortion, sensor linearity, and dynamic 

range, then to estimate system performance based on a combination of these factors. This estimate is usually 

based on experience, and is often more of an art than a science. 

Camera information capacity, based on Claude Shannon’s groundbreaking work on information theory [1],[2] 

holds great promise as a figure of merit for a variety of imaging systems, especially for Machine Vision and Artificial 

Intelligence that operate on information rather than pixels, but it is unfamiliar and has traditionally been difficult 

to measure. Appendix 1 contains an introduction to information theory. 

In 2019 we developed a method for measuring it using the Siemens star test chart [3] that gave good results, 

especially when the effects of image processing such as demosaicing, compression, and bilateral (nonuniform) 

filtering were of concern, but was slower and less convenient than optimum. 

We present several new image quality measurements that can be made from the familiar 

slanted-edge test pattern, and can be applied to a archives of existing test images.   

This document (Part 1) describes the Edge variance method of measuring camera 

information capacity, which combines sharpness and noise. 

Part 2 describes the Noise image method of measuring Power Spectral Density (PSD), Noise 

Equivalent Quanta (NEQ), Information Capacity, and Ideal Observer Signal-to-Noise Ratio 

(SNRI), which measures detectability of small objects. 

The measurements take advantage of two newly-discovered capabilities of slanted-edges. 

They have great potential as a fundamental figure of merit for image quality, particularly 

for Machine Vision and Artificial Intelligence. 

 

http://www.imatest.com/
https://www.imatest.com/wp-content/uploads/2022/11/Information_capacity_slanted_edge.pdf
https://en.wikipedia.org/wiki/Machine_vision#Definition
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://en.wikipedia.org/wiki/Bilateral_filter
https://en.wikipedia.org/wiki/Bilateral_filter
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In this white paper, We describe the new Edge variance method for measuring camera information capacity, C, 

from the well-known slanted-edge test pattern, specified by the ISO standard, ISO 12233:2017 Photography — 

Electronic still picture imaging — Resolution and spatial frequency responses [4]. Measuring information capacity 

requires no extra effort: it essentially comes for free along with slanted-edge MTF measurements. C has units of 

bits per pixel or total bits per image for a specified ISO speed and chart contrast, making it easy to compare very 

different cameras. The new measurement can be used to solve some important problems, such as finding a 

camera that meets information capacity requirements with a minimum number of pixels— important because 

fewer pixels mean faster processing as well as lower cost. 

A follow-up white paper will describe the newer Noise image method for calculating the Noise Power Spectrum 

(NPS), Noise Equivalent Quantum (NEQ), Ideal observer SNR (SNRI), in addition to information capacity. Until it is 

available, the method is described on the web page, New measurements from Slanted-edges: Information 

capacity, NPS, NEQ, & SNRI. 

 

The Slanted-edge measurement 
The slanted-edge information capacity measurement uses an overlooked capability of slanted-edge 
regions that was quite literally hidden in plain sight. To understand it, we 
present a brief summary of the standard ISO 12233 Edge SFR (e-SFR) 
algorithm. For a full (but dense) explanation, see Appendix D of the ISO 
standard.  

1. The image should be well-exposed, avoiding the dark “toe” and light 
“shoulder” regions, where the image deviates from standard log-
linear behavior, log(𝑝𝑖𝑥𝑒𝑙 𝑙𝑒𝑣𝑒𝑙) = 𝛾𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 × log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) 

2. Linearize the image by applying the inverse of the encoding gamma 
curve or using the edge itself to obtain an approximate linearization if 
the chart contrast is known.  

3. Find the center of the transition between the light and dark regions 

for each horizontal scan line yl (x). 

4. Fit a polynomial curve to the center locations. In ISO 12233:2017+, it can be up to 6th order. 

5. Depending on the location of the curve on the scan line, add each appropriately shifted scan line 
to one of four bins.  

6. Combine the mean signal in each bin to obtain the 4× oversampled averaged edge for L scan 
lines, μs(x), illustrated in the upper plot of Figure 2.  

𝜇𝑠(x) =  
1

𝐿
∑ 𝑦𝑙(𝑥 − 𝛿) 

𝐿−1

𝑙=0
 

7. Note that we are effectively performing signal averaging, where the signal-to-noise ratio 
improves by the square root of the number of samples 

8. Modulation Transfer Function MTF(f) is calculated by differentiating the averaged edge, 
windowing it, then taking the magnitude of the Fourier transform, normalized to 1 (100%) at zero 
frequency. MTF(f) is illustrated in the lower plots of Figure 2, below. 

Figure 1. Slanted edge 

https://www.iso.org/standard/71696.html
https://www.iso.org/standard/71696.html
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/
https://www.iso.org/standard/71696.html
https://www.iso.org/standard/71696.html
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The overlooked capability of the ISO 12233 binning algorithm: 

the Edge variance method 
A simple addition to the binning algorithm described above allows the variance of the signal, σs

2 
(equivalent to noise power), to be calculated in addition to the mean, μs.  

In addition to the sum, ∑ 𝑦𝑙(𝑥), Calculate the sum of the squares of each scan line, ∑ 𝑦𝑙
2(𝑥). 

This allows variance σs
2 of the edge be calculated from the two arrays,  

𝜎𝑠
2(x) =

1

𝐿
∑ (𝑦𝑙(𝑥) − 𝜇𝑠(𝑥))2

𝐿−1

𝑙=0
=  

1

𝐿
∑ 𝑦𝑙

2(x) − (
1

𝐿
∑ 𝑦𝑙(x)

𝐿−1

𝑙=0
)

2𝐿−1

𝑙=0
 

σs
2(x) and σs(x) are the noise power and noise voltage (N(x) and √𝑁(𝑥)), not the noise itself, at each 

position on the oversampled array — including the edge transition, where noise was traditionally difficult 

to measure. Noise voltage σs
2(x) is shown in Figures 3, 5, and 11. 

 

Slanted-edge results for the same image saved as raw (converted to TIFF) and JPEG 

  

Figure 2. Edge and MTF plots for compact digital camera, ISO 100, Y (Luminance) channel 
Upper plot:  Mean edge μs              Lower plot:  MTF(f).  

       Left: Unsharpened TIFF from RAW                Right: Strongly-sharpened in-camera JPEG  

The 4:1 edge information capacity C4 for the JPEG image (above-right) is sensitive to the region used 

to calculate noise, as discussed in Noise Power (N). The minimally-processed TIFF on the left calculates 

N from mean of the edge. The bilateral-filtered JPEG on the right uses the peak of the smoothed noise 

near the edge. C4 is slightly lower for the JPEG, but Cmax is significantly higher, most likely because the 

bilateral filtering adversely affects noise measurements N1 and N2 on either side of the edge, and 

hence the Nmean calculation, described in the section, calculating Cmax.  

https://en.wikipedia.org/wiki/Variance#Discrete_random_variable
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σs
2(x) and σs(x) must be corrected for binning noise — a recently-discovered artifact of the ISO 12233 

binning algorithm, described below. 

Noise N measured in the presence of a signal is more accurate than noise measured in flat areas, and can 

be entered into the Shannon-Hartley equation for channel capacity C. 

𝐶 = ∫ log2 (1 +
𝑆(𝑓)

𝑁(𝑓)
) 𝑑𝑓 

𝑊

0

 

where S and N are the average signal and noise power. C is strongly dependent on test chart contrast 

ratio and exposure, both of which affect signal S. Hence it is not a reliable indicator of a camera’s full 

information capacity, especially for low contrast charts (≤10:1), which are recommended for the most 

accurate MTF measurements. After measurement details are presented, we will derive a more stable 

metric for the camera’s full capacity, Cmax.  

 

Binning noise 
Binning noise, which has identical statistics to quantization noise, is a recently-discovered artifact of the 
ISO 12233 binning algorithm. It is largest near the image transition — where the Line Spread Function  
𝐿𝑆𝐹(𝑥) = 𝑑𝜇𝑠(𝑥) 𝑑𝑥⁄  (Figure 4) is maximum, and it can affect information capacity measurements. It 
appears because the individual scan lines are added to one of four bins, based on a polynomial fit to the 
center locations of the scan lines, which is a continuous function.  

Assume that n identical signals μs(x) are binned over an interval {-Δ/2, Δ/2}, where Δ = 1 in the 4× 
oversampled output of the binning algorithm (noting that Δ = (original pixel spacing)/4). If there were no 

binning noise, we would expect the binning noise power σBnoise
2 to be zero. However, the values of μs(xk) 

are summed at uniformly-distributed locations xk over the interval Δ, so they take on values 𝜇𝑘 =

𝜇𝑠(𝑥𝑘) = 𝜇𝑠(𝑥0 + 𝛿) = 𝜇𝑠(𝑥0) + 𝛿
𝑑𝜇(𝑥)

𝑑𝑥
= 𝜇𝑠(𝑥0) + 𝛿 𝐿𝑆𝐹(𝑥) for Line Spread Function LSF (Figure 4). 

Noting that δ is uniformly distributed over {-1/2, 1/2} we apply the equation for the variance of a 
uniform distribution (similar to  quantization noise) to get 

𝜎𝐵𝑛𝑜𝑖𝑠𝑒
2 (𝑥) = 𝐿𝑆𝐹2(𝑥)𝜎𝑈𝑛𝑖𝑓𝑜𝑟𝑚

2 = 𝐿𝑆𝐹2(𝑥)/12    or    𝜎𝐵𝑛𝑜𝑖𝑠𝑒 = 𝐿𝑆𝐹(𝑥)/√12. 

Although this equation involves some approximations, we have had good success calculating the 

corrected noise, 𝜎𝑠
2(corrected) =  𝜎𝑠

2 − 𝜎𝐵𝑛𝑜𝑖𝑠𝑒
2 . Binning noise has no effect on conventional MTF 

calculations. 

An advantage of this method is that it allows noise to be calculated at every point where the 

signal is present — especially near the edge transition, where it has the greatest impact on 

system performance — not just in the flat, uniform areas. 

 

https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem#Frequency-dependent_(colored_noise)_case
https://classes.engineering.wustl.edu/ese488/Lectures/Lecture5a_QNoise.pdf
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://classes.engineering.wustl.edu/ese488/Lectures/Lecture5a_QNoise.pdf
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Figure 3. Edge noise for a Micro Four-Thirds digital camera, ISO 100, Y (Luminance) channel 
from raw image converted to TIFF with minimal processing. 

Left: with binning noise (σs
2(uncorrected));       Right: with binning noise removed (σs

2(corrected)) 

Binning noise also affects JPEG files with bilateral filtering (nonuniform sharpening). Removing it is 

important for robust calculations. 

Signal power S  
The peak-to-peak signal voltage at low spatial frequencies is the measured difference between the 

means of the light and dark regions of the linearized slanted edge μs(x). 

𝑉𝑝−𝑝 = ∆𝜇𝑠 = 𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘  

The signal power is the variance of this signal. If we assume a uniform distribution between the limits 
𝜇𝑠𝐿𝑖𝑔ℎ𝑡  and 𝜇𝑠𝐷𝑎𝑟𝑘, which maximizes information capacity, we note that the variance of the uniform 

distribution , which is the average signal power at low spatial frequencies, is 

𝜎𝑉
2 = 𝑆𝑎𝑣𝑔(0) = (𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘)/12 = 𝑉𝑝−𝑝

2 /12 

The Shannon-Hartley equation uses the average frequency-dependent signal power, S(f).  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝 𝑀𝑇𝐹(𝑓))
2

12⁄  

Signal power S is proportional to the square of the chart contrast if the image has been properly 

linearized. Smax ≤ 1 for linearized images normalized to 1.  

Noise power N  
Noise power N has the same units as signal power S; hence S/N is dimensionless. 

Noise N near the edge transition dominates system performance ― not noise measured in flat patches. 

The calculation of N depends on the detected image type. Two distinct image types cover most cases of 
interest. 

(1) Uniformly or minimally-processed images, often TIFFs converted from raw files (raw→TIFF), that 
don’t have bilateral filtering, i.e., they either have no or uniform sharpening or noise reduction. Most 
cameras intended for Machine Vision/Artificial Intelligence fall into this category. 

Since noise can be a very rough function of x (Figures 5 and 6), a large region size is required for a 

stable value of N. We average over all values of x in the ROI. (Formerly, we averaged noise over a region 

https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem#Statement_of_the_theorem
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defined as the edge center ± 1.5×PW20, where PW20 is the width of the region where the Line Spread function 𝐿𝑆𝐹 ≥
0.20 𝐿𝑆𝐹𝑚𝑎𝑥.)  

𝑁𝑚𝑒𝑡ℎ𝑜𝑑_1 = mean(𝜎𝑠
2(𝑥))     for all values of 𝑥 in the ROI. 

(2) Bilateral-filtered images include most JPEG images from consumer cameras.*  

*Bilateral filtering and JPEG data compression are completely independent, 
though they’re often found together in consumer cameras. 

Bilateral filters sharpen images near contrasty features such as edges, but blur them (to reduce 
noise) elsewhere. This causes a noise peak near the edge. The blurring improves Signal-to-Noise 
Ratio (SNR), but it removes information. Because of this, noise near the edge can dominate camera 

performance, and should be strongly weighted in calculating N.  

 We have long known about the noise peak, but until the present 
method was developed, there was no good way to measure it (or 
detect bilateral filtering).  

For calculating information capacity C, we use the noise at the 
peak, smoothed slightly (with a rectangular kernel of length 
PW20/2) to remove jaggedness. This is a somewhat arbitrary 
choice that produces reasonably consistent results. This method 
also works with minimally-processed images, but results are less 
consistent than method (1). 

The Imatest program has options for manually or automatically selecting the noise calculation method 
based on whether or not a peak is detected near the transition. The automatic detection is not 100% 
reliable (though if it fails, information capacity is only slightly changed). Some additional considerations: 

• Noise is not exactly white, but these approximations are close enough to yield good results. This 
assumption is strongly supported by experimental results in [13]. 

• Noise power is larger on the lighter side of the edge because of photon shot noise, which 

increases with the number of photons reaching the sensor pixels. The mean includes both sides.  

• More generally, noise power N increases with exposure. For linear sensors, 𝑁(𝑉) = 𝑘0 + 𝑘1𝑉, 

where k1 is the coefficient for photon shot noise. 

Figure 5 illustrates the noise voltage 𝜎𝑠(𝑥) = √𝑁(𝑥) for minimally-processed TIFF files (on the right) 

and for bilateral-filtered JPEG files (on the left) for a compact camera. The JPEGs have a large, distinct 
peak that is absent for the TIFFs.  The solid dark curves are for the luminance (Y) channel smoothed with 
a 5 pixel-wide rectangular function (1.25 pixels before 4× oversampling) to improve plot appearance. 

  

Figure 4. Line Spread Function (LSF) for a 
sharpened JPEG. 

https://en.wikipedia.org/wiki/Bilateral_filter
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Bilateral-filtered (typical of in-camera JPEGs)                        Minimally or uniformly-processed 

 

Figure 5. Edge noise voltage @ ISO 100.    Left: Bilateral-filtered in-camera JPEG;  Right Unsharpened TIFF from raw. 
The x-axis is the original pixel location of the 4× oversampled signal. 

Note that the spike around x = -19 of the plot on the right is a noise outlier likely caused by a speck of dust on the chart. 
It looks worse in the unsmoothed plot (dotted curve). The smoothing (bold curve) controlled it well. 

Bandwidth W  
Bandwidth W is always 0.5 cycles/pixel (the Nyquist frequency). Signals above Nyquist do not contribute 
to the information content; they can actually reduce it by causing aliasing — spurious low frequency 

signals like Moiré that can interfere with the true image. Frequency-dependence comes from MTF(f). 
Using the uniformly-distributed assumption,  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝 𝑀𝑇𝐹(𝑓))
2

12⁄  

Combining S, N, and W to obtain information capacity C 
Savg(f), N, and W are entered into the Shannon-Hartley equation. 

𝐶 = ∫ log2 (1 +
𝑆𝑎𝑣𝑔(𝑓)

𝑁
)

0.5

0

df ≅ ∑ log2 (1 +
𝑆𝑎𝑣𝑔(𝑖∆𝑓)

𝑁
) ∆𝑓

0.5/∆𝑓

𝑖=0

  

MTF(f) can take a large bite out of C, especially since it is squared in the above equation. Because of its 

frequency-dependence, it is sometimes confused with bandwidth. For the raw-converted image in 

Figure 2, lower-left, it drops to zero around 0.6 cycles/pixel — typical of a well-focused high quality 

camera with no sharpening that makes good use of the sensor pixels. Since it is a nearly straight line, 

𝑀𝑇𝐹(𝑓) ≅ 1 − 𝑓 0.6⁄   for 𝑓 ≤ 0.6. The integral of MTF2(f) for 0 ≤ f ≤ 0.5 is approximately 0.204: a 

significant loss from the value of 0.5 for a perfect (no rolloff) response. 

Would increasing MTF help? The relationship between MTF and signal spread (or extent) is explored for 

diffraction-limited systems in [5] and summarized in the Imatest web page, Diffraction, Optimum 

Aperture, and Defocus. If all the energy of a point of light were inside one pixel, there would be no MTF 

loss. This corresponds to the case of Q = 0.5, where MTF is 0.69 at the Nyquist frequency (0.5 C/P), 

dropping to 0.4 at twice Nyquist (1 C/P). Such a system would have extreme aliasing (low frequency) 

artifacts that would degrade its performance. The camera in Figure 2, lower-left has Q ≈ 1.8, with only a 

little energy above Nyquist, so aliasing is reasonably well-controlled. But the pulse is spread over two 

pixels, with the 10-90% rise distance = 2.22 pixels in Figure 2, upper-left, leading to a significant loss. This 

appears to be an unavoidable tradeoff. 

https://www.imatest.com/docs/diffraction-and-optimum-aperture/#visq
https://www.imatest.com/docs/diffraction-and-optimum-aperture/#visq
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Technique 
Test chart edge contrast should be between 2:1 and 10:1, with 4:1 (the ISO 12233 e-SFR standard) 
recommended. Edge contrast greater than 10:1 increases the likelihood of nonlinear operation 
(saturation or clipping), which compromises results.  

Images should be well-exposed because saturation or clipping (both deviations from log-linearity) can 
give misleading results indicating better than real performance.  

The camera should be well-focused (unless you’re testing misfocus), and sturdy camera support should 

be employed. 

Although results are relatively insensitive to ROI selection, some care must be taken to obtain good 

consistency. ROIs should be reasonably large; we recommend at least 30x60 pixels. The edge should be 

centered in the selected region, and there should a reasonable amount of “breathing room” on the 

sides. A good initial “rule of thumb”: The ratio of light to dark space at the ends of the edges (the top 

and bottom of Figure 1) should be no larger than 35/65 (or 65/35, depending on the orientation).  

 

Additional assumptions 
A key assumption is that the camera’s dynamic range (the range of tones that can be reproduced with 

good contrast and Signal-to-Noise Ratio (SNR)) is sufficient for the intended task. Most modern image 

sensors have dynamic ranges greater than 60dB (1000:1); high dynamic range (HDR) sensors have 120 

dB or more. The majority of scenes likely to occur in pictorial, medical, or robotic imaging have tonal 

ranges under 60 dB. Lens flare (stray light) typically limits practical camera dynamic range to 100dB or 

less. If there are questions or doubt about the camera’s dynamic range, we strongly recommend 

measuring it.  

The one class of images where scene contrast is likely to exceed 60 dB is night driving, where the scenes 

can include both light sources and shadows that contain objects of importance. A “worst case” scene is a 

forward view from a car emerging from a dark tunnel into daylight, where it’s important to see the road 

ahead inside and outside the tunnel. The key concern is that flare light (or veiling glare) from the light 

sources can fog the important middle to dark tones. 

Sensor nonuniformities (fixed-pattern noise, also called PRNU (Photo Response Nonuniformity) are 

included in noise measurements. Tonal response should be well-behaved (typically following a gamma 

curve, except possibly in the extreme highlights and shadows).  

Because C is a strong function of the test chart contrast ratio, we include the contrast when reporting 

C, i.e., Cn for n:1 contrast ratio. C4, for the ISO 12233-standard 4:1 contrast ratio, is used throughout 

this document.  

 

 

https://www.imatest.com/solutions/dynamic-range/#sensordr
https://www.imatest.com/docs/veilingglare
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Sensitivity to exposure 
Because the old ISO 12233:2000 standard (replaced in 2014) used high contrast edges (≥50:1), 4:1 edges 

may appear to have relatively low contrast. Nevertheless, they can occupy a substantial portion of the 

available linearized/normalized signal voltage V, where 0 ≤ V ≤ 1. The portion is strongly dependent on 

exposure. For a standard “good” exposure, where Vmean ≈ 0.20, the voltage from the 4:1 edge occupies 

24% of the total range. But it can occupy as much as 75% for a 1.64 f-stop overexposed image. 

Vmean Vmin (0.4 Vmean) Vmax (1.6 Vmean) Range = ΔV =  
Vmax-Vmin = Vp-p 

0.12 0.048 0.192 0.144 

0.20 0.08 0.32 0.24 

0.40 0.16 0.64 0.48 

0.60 0.24 0.96 0.72 
Table 1: Vmean, Vmin, Vmax, and range of normalized signal voltage 

ΔV = Vmax-Vmin = Vp-p for 4:1 contrast ratio edges  

Because both noise power N and voltage range ΔV increase with exposure, C4 is a strong function of 

exposure.  

Consistent exposure can be difficult to maintain with autoexposure 

consumer cameras because their JPEG output files often have 

“shoulders” in their tonal response (regions of reduced highlight contrast 

intended to improve pictorial quality by minimizing saturated (“burnt 

out”) highlights). Implementing a shoulder requires extra headroom, i.e., 

a degree of underexposure, which can vary for different camera models. 

Since autoexposure is optimized for JPEG output, minimally processed files, typically TIFFs converted 

from raw with simple gamma curves, often appear to be underexposed.  

Because C4 is a strong function of exposure and consistent exposure can be difficult to obtain, we have 

developed a new metric, Cmax, described below, that is relatively insensitive to exposure. 

Visualizing 4:1 contrast — Because our eyes have a logarithmic response to light, 4:1 contrast edges 

appear to have a constant contrast regardless of their brightness (as long as they’re not saturated), even 

though ΔV in the above table varies widely.  

 

 

4:1 contrast ratio slanted edges are preferred for measurements because  

• They are specified by the ISO 12233 standard since 2014. There is a huge archive of such images. 

• The moderate contrast level is characteristic of features (edges, etc.) in typical images. 

• Higher contrast edges can cause sensors to operate in nonlinear regions, often causing clipping. 

This reduces accuracy. 
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Maximum information capacity Cmax ― a more consistent metric 
The strong dependence of C4 on exposure reduces its value as a performance metric. The reasons for 

this dependence are (1) voltage range ΔV = Vp-p is a strong function of exposure, and (2) noise power N is 

also a function of exposure. 

We have developed a new metric for maximum information capacity: Cmax, that is nearly 

independent of exposure. It is obtained in two steps. 

Step1:  Replace the measured peak-to-peak voltage range Vp-p with the maximum allowable value,  

𝑉𝑝−𝑝_𝑚𝑎𝑥 = 1. This may seem like a simplification, but it works well for most cameras. Referring to the 

section on Signal Power S,  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝_𝑚𝑎𝑥 𝑀𝑇𝐹(𝑓))
2

12⁄ = 𝑀𝑇𝐹(𝑓)2/12 

If the camera has a pixel offset (a minimum allowable pixel level) or a maximum pixel level, Vp-p_max may 
need to be set lower than 1.  

Step 2:  Replace the measured noise power N with Nmean, the mean of N over the range 0 ≤ V ≤ 1 

(where 1 is the maximum allowable normalized signal voltage V). The general equation for noise power 

N as a function of V for linear image sensors is 

𝑁(𝑉) = 𝑘0 + 𝑘1𝑉 

k0 is the coefficient for constant noise (dark current noise, Johnson (electronic) noise, etc.). k1 is the 

coefficient for photon shot noise. Noise powers N1 = σ1
2 and N2 = σ2

2 are measured along with signal 

voltages V1 and V2 on either side of the edge transition.  

Assuming  𝑁1 = 𝑘0 + 𝑘1𝑉1  and  𝑁2 = 𝑘0 + 𝑘1𝑉2  we can use two equations in two unknowns to solve 

for k0 and k1. 

𝑘0 =
𝑁1𝑉2 − 𝑁2𝑉1

𝑉2 − 𝑉1
 ;     𝑘1 =

𝑁2 − 𝑁1

𝑉2 − 𝑉1
 

N closely approximates the noise used in noise calculation method (1) (used for minimally-processed 

images that don’t have bilateral filtering). But if method (2) (the smoothed peak noise) is used 

(recommended for in-camera JPEGs with bilateral filtering), N is generally larger, and must be modified.  

𝑁 →  𝑘𝑁𝑁,   where  𝑘𝑁 =  𝑁𝑚𝑒𝑡ℎ𝑜𝑑_2/𝑁𝑚𝑒𝑡ℎ𝑜𝑑_1 

In bilateral-filtered images (most JPEGs from consumer cameras), lowpass filtering (for noise reduction) 

may be affect N1 and N2 strongly enough so the equation 𝑁(𝑉) = 𝑘0 + 𝑘1𝑉 does not reliably hold. This 

can adversely affect the accuracy of Cmax. 

The mean noise power Nmean over the range 0 ≤ V ≤ 1 for calculating Cmax is 

𝑁𝑚𝑒𝑎𝑛 = ∫ 𝑁(𝑉) 𝑑𝑣
1

0

∫ 𝑑𝑣
1

0

= ∫ (𝑘0 + 𝑘1𝑉)𝑑𝑣 =
1

0

⁄ 𝑘0 + 𝑘1/2  

Using   𝑁 = 𝑁𝑚𝑒𝑎𝑛 , 𝑉𝑝−𝑝_𝑚𝑎𝑥 = 1   and   𝑆𝑎𝑣𝑔(𝑓) = 𝑀𝑇𝐹(𝑓)2/12 ,  
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𝐶𝑚𝑎𝑥 = ∫ log2 (1 +
𝑀𝑇𝐹(𝑓)2

12 𝑁𝑚𝑒𝑎𝑛
)

0.5

0

df ≅ ∑ log2 (1 +
𝑀𝑇𝐹(𝑖∆𝑓)2

12 𝑁𝑚𝑒𝑎𝑛
) ∆𝑓

0.5/∆𝑓

𝑖=0

 

Cmax (Figure 6) is nearly independent of exposure for minimally or uniformly-processed images with 
linear sensors, where noise power N is a known function of signal voltage V.  

It is approximate for other imaging systems (with bilateral-filtered in-camera JPEGs, HDR sensors, etc.) 

where noise power N is not a simple function of V.  

   

Figure 6. C4 and Cmax for minimally processed raw→TIFF and JPEG images for two cameras: 
1. Panasonic Lumix LX5 (10 MP compact), 2. Panasonic Lumix G3 (16 MP micro 4/3). 

The left edge of the central square was used for the analysis. 
Cmax results are consistent for raw→TIFF images, except for the darkest (severely underexposed). 

Potential problems with Cmax 
The Cmax calculation assumes that the image is capable of 

spanning the entire range of Digital Numbers (DNs), for example, 

0-255 for images with bit depth = 8. This isn’t always the case, 

especially with cameras under development where image 

processing isn’t functioning well. We don’t know the history of 

the image on the right ― it may be a prototype near infrared 

(NIR) camera.  

The pixel level in the brightest OECF patch is only 145 ― far 

below the maximum DN for 8-bit files of 255, and gamma = 0.24 

is exceptionally low (0.45 is nominal for sRGB color space). The gamma curve is well-behaved, showing 

few signs of veiling glare or saturation.  

We may need to enter information about the maximum and perhaps minimum available DN to get a 

reasonable value of Cmax. The dynamic range should be measured, possibly using a newly-developed 

chart that works in the visible and NIR regions. 

Tone-mapped images, which can be pictorially pleasing with High Dynamic Range (HDR) scenes, but ruin 

measurements, cannot be used for Cmax.  

https://www.imatest.com/product/imatest-visnir-dynamic-range-chart/
https://www.imatest.com/product/imatest-visnir-dynamic-range-chart/
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Information capacity results 
We tested three cameras that produced both raw and JPEG output for information capacity C as a 
function of Exposure Index (ISO speed setting).  

 

 

Table 1. Cameras used in the tests 

1. Panasonic 
Lumix LX5 

2.14 µm pixel pitch. An older (2010) compact 10.1-megapixel camera with a Leica 
f/2 zoom lens set to f/4. 

2. Sony A6000 3.88 µm pixel pitch. A 24-megapixel micro four-thirds camera with a 60mm Canon 
macro lens set to f/8 

3. Sony A7Rii 4.5 µm pixel pitch. A 42-megapixel full-frame camera with a Backside-Illuminated 
(BSI) sensor and a 90mm f/2.8 Sony macro lens set to f/8 

 

We captured both JPEG and raw images, which were converted to 24-bit sRGB (encoding gamma ≌ 
1/2.2) TIFF images (designated as raw→TIFF) with LibRaw, with minimal processing (defined as no 
sharpening, no noise reduction, and a simple gamma-encoding function). Results with 48-bit Adobe sRGB 
conversion were nearly identical. 

The image in Figure 7 below, which was analyzed in “Camera Information Capacity: A Key Performance 
Indicator for Machine Vision and Artificial Intelligence Systems”, contains a 50:1 contrast Siemens star 
and four 4:1 contrast slanted edges on the sides. We used the upper-left slanted edge for most tests. The 
average background of the chart should be close to neutral gray (18% reflectance) to ensure a good 
exposure (exposure compensation may be applied if needed and available). 

 

Figure 7. Typical image (cropped) including Siemens star and slanted-edges to the left and right of the star. 

https://www.libraw.org/
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
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Results for JPEG and minimally-processed raw→TIFF images 
Figures 8-10 show results for the luminance (Y) channel as a function of ISO speed (Exposure Index) for 
the raw→TIFF images (solid lines) and JPEG images (dotted lines). For the raw→TIFF images the 

relationship between ISO speed and C is similar for all three cameras. Noise calculation (1) is used for the 
raw→TIFF images; noise calculation (2) is used for the bilateral-filtered JPEGs. 

Results are for the luminance (Y) channel, where Y = 0.2125∙R + 0.7154∙G +0.0721∙B.  

C4  4:1 slanted edge 
 

The information capacity for 4:1 

contrast edges, C4, shows similar 

trends to Cmax and Cstar, but since 
the relatively low 4:1 contrast uses 
only a fraction of the available 

signal level, C4 is lower than either 
measurement.  

 

 

 

 

 

 

 
Figure 8. Information capacity C4 from 4:1 slanted-edge images. Solid 

lines for raw→TIFF images; Dotted lines for JPEGs. 
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Cmax  maximum information capacity 
 

Cmax is the maximum information 

capacity of the camera, derived from 

measurements of 4:1 edges. It’s 

relatively accurate for minimally or 

uniformly-processed (often 

raw→TIFF) images, and it’s much 

less sensitive to exposure than C4, 

making it a very robust measure-

ment, well-suited for comparing the 

performance of different cameras. 

Comparisons of information capacity 

between different cameras are simi-

lar regardless of the measurement 

method.  

 
Figure 9. Information capacity Cmax from slanted-edge results.  

Solid lines for TIFFs derived from raw images; dotted lines for JPEGs. 

Cstar  Siemens star (50:1 contrast) from the 2020 Information Capacity white paper 

 
 

 

Information capacities Cstar for the 

star are generally higher than C4 

but lower than Cmax for slanted 
edges because the range of tones in 
the star is between the two, i.e., the 
star images don’t use the entire 
available tonal range.  

 

 

 

 

 Figure 10. Information capacity from Siemens star images 
for the three cameras as a function of Exposure Index: 

Solid lines for TIFFs derived from raw images; dotted lines for JPEGs. 

https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
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Color channels 
The separate R, G, and B channels tend to have slightly 

lower C4 than the Y-channel because the uncorrelated 

noise from the separate channels are combined in the 

Y-channel. Example: for Camera 2 (24 Megapixels, 

Micro Four-Thirds) at ISO 400, C4Y = 1.96, C4R = 1.16, 

C4G = 1.81. and C4B = 1.36 bits/pixel. The noise for 

each channel is shown on the Right: from best (lowest 

noise, highest C) to worst: Y, G, B, and R. The green 

channel has the best SNR because the image sensor is 

most sensitive to green, and hence the green channel 

had the least boost in the white balance process. 

𝐶𝑅 + 𝐶𝐺 + 𝐶𝐵 is nearly triple CY. But this is to be expected because the three color channels are in 24-

bit (RGB) pixels instead of 8-bit (single channel) pixels.  

Even though we’ve focused on demosaiced images, the slanted-edge method can be applied to raw 

(undemosaiced) images. For this camera, C4Ru = 2.09, C4GRu = 2.43, C4Bu = 1.6. and C4GBu = 2.47 

bits/pixel, where the undemosaiced (u) channels have a quarter as many pixels as the demosaiced 

channels. We haven’t worked on interpreting these results.  

Effects of sharpening 
The two examples below show that sharpening has no significant effect on slanted-edge information 
capacity, as expected for a valid measurement. The two images (originally a minimally-processed TIFF) 
have been strongly USM sharpened in the Imatest Image Processing module with Radii = 1 and 2 and 

Amount = 2. They can be compared to Figure 2 (left), where C4 = 2.06 and Cmax = 3.82 b/p. We observed 

a similar insensitivity of C to sharpening with Siemens stars.  

Figure 11. Noise for camera 2 @ ISO 400, showing the 
different color channels 

https://www.imatest.com/docs/image-processing/
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Figure 12. Edge/MTF plots of same image as Figure 2 (left where C4 = 2.35 b/p): TIFF from RAW, ISO 100 
Left: sharpening Radius = 1, Amount = 2. C4 = 2.15 b/p.     Right: sharpening Radius = 2; Amount = 2. C4 = 1.93 b/p. 

This highlights another benefit of the information capacity measurement. It does not reward excessive 

sharpening, which creates “halos” near edges. These halos improve the perception of sharpness (by the 

human eye) when applied in moderation, but create artifacts that degrade image appearance when 

applied in excess [6]. They also have a bad reputation for machine vision applications.  

Total information capacity 
The results we have presented thus far are information capacity C in bits per pixel. The total information 

capacity Ctotal for the entire image must take variations in C over the image into account. In Imatest, 

the mean value of C for the image is displayed in the 3D plots for auto-detected slanted-edge modules, 

SFRplus, eSFR ISO, and Checkerboard, which can map a variety of results, including C, over the image. 

For the information capacity plots (C4 and Cmax), the zone weights are always [1, 1, 1], and the total 

capacity is displayed. 

𝐶𝑡𝑜𝑡𝑎𝑙 = mean(𝐶) × megapixels. 

https://www.imatest.com/docs/sfrplus_instructions
https://www.imatest.com/docs/sfrplus_instructions
https://www.imatest.com/docs/checkerboard_instructions
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Figure 13.  3D contour eSFR ISO plot of Cmax for the Luminance (Y) channel, ISO 100 

The mean information capacity Cmax (unweighted for information capacity calculations) is 2.847 

bits/pixel. Since the camera has 16 Megapixels, total capacity CmaxTotal for the Luminance (Y) channel = 

45.44 MB.  

 

Signal Averaging 
Extremely noisy images, typically acquired in dim light or at high ISO speeds (exposure indices), may 

have inaccurate MTF calculations, and hence information capacity measurements. A classic technique 

for reducing the effect of noise and obtaining reliable measurements from noisy images is signal avera-

ging, where n identical captures of the same image are averaged. When this is done, the sum of the 

signal voltage and the sum of the noise power (noise voltage2), which is uncorrelated, are both propor-

tional to n. This causes noise voltage to be proportional to √𝑛 and SNR to increase by √𝑛 for n averages:  

by 3dB whenever n is doubled. To obtain correct information capacity measurements when the signal is 

averaged, the noise power is multiplied by n in the information capacity calculation.  

This effect is illustrated below for a camera with a one-inch sensor, which wasn’t perfectly focused, at 

ISO 12800. A single image is shown on the left. Note that MTF is rough and has significant high 

frequency bumps. For the average of 8 images is shown on the right, information capacity C is lower 

because MTF is better behaved. 
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Figure 14. Results without (left) and with (right) signal averaging (8×). 1 inch sensor @ ISO 12800. 
Note that Information capacity C4 and Cmax for the averaged images are lower because  

there is less spurious MTF caused by noise at high frequencies. (Unaveraged C is very inconsistent.) 

Comparisons of the slanted-edge and Siemens star methods 
Slanted-edge methods  

• A key advantage is that any image of a slanted-edge test chart with printed contrast ≤ 10:1 can 

be used to obtain C. The ISO 12233 2014+ standard contrast ratio of 4:1 is strongly 
recommended. Imatest and many of its customers have large archives of suitable images that can 
be run without modification. 

• Works well with multi-region images: C can be easily mapped over the entire image (along with a 
great many other results). 

• For bilateral-filtered images (most in-camera JPEGs): Noise is reduced in smooth areas, but the 

calculation for C uses the peak noise near the transition, which is not reduced. Results from the 
Edge variance method are useful, but results are more consistent and reliable for minimally or 
uniformly processed images. 

• Does not measure the effects of artifacts very well. Clipped images may show improved 
performance due to sharp corners on the edge transition and reduced noise in the clipped areas. 
The Siemens star gives more accurate results for clipped images, but clipping should be avoided 
whenever accurate, repeatable measurements are required. 

Siemens star method  

https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
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• Generally excellent results, but sensitive to optical distortion. Best if the star is in the center of 
the image; may not work as well with multiple stars if distortion is present. Not good for mapping 

C over the image or finding the total information capacity. 

• Slower than slanted edges. 

• For bilateral-filtered images (most in-camera JPEGs):  fine high-frequency detail is reduced 
(smoothed), but since the star calculation defines noise as the difference between the inferred 

original and acquired signal, noise is increased, appropriately reducing C.  

• Appropriate response to image processing artifacts: enables comparison of demosaicing 

techniques, image compression, aliasing, etc. C is reduced appropriately for clipped images.  

Both methods assume that the camera dynamic range is sufficient for the intended task. This is likely to 
hold for many MV/AI applications, but it may not hold for automotive night driving, where dynamic range 
may be compromised by stray light and veiling glare. If there are any questions about dynamic range, we 
recommend testing it using a transmissive chart. Imatest’s new VIS/NIR charts, which are spectrally 
neutral and work in the visible and near infrared (NIR) ranges, are especially suitable.  

When comparing cameras, the same measurement method (chart type, contrast, etc.) should be used.  

Future work 
▪ Work with partners in industry and academia to correlate information capacity C with 

performance of Machine Vision and Artificial Intelligence systems. 

▪ Work to include camera information capacity in several standards, especially ISO TC42.  

▪ Do more to correlate information capacity C with the subjective visual appearance of a variety of 

images, without and with additional image processing. We may extend the model of C to include 
viewing conditions and the human visual system to obtain a “visual information capacity”, 
analogous to visual noise or acutance. 

▪ Determine if we can predict the effects of image processing (sharpening, noise reduction) on 
MV/AI performance. Our initial approach will be to calculate SNRI, based on the work of Paul 
Kane and collaborators [5], [8], [9].  

Summary 
We have developed two methods for measuring camera information capacity, C, from slanted edges. 
This white paper has described the Edge variance method.  

Information capacity has great potential value as a figure of merit for evaluating camera image quality 
because it combines the effects of sharpness, noise, and (for the Siemens star calculation) several types 
of artifact. The new slanted edge method are fast and convenient ― requiring no special effort.  

The key concepts we have presented are 

1. Information capacity is a fundamental figure merit for imaging systems ― more so than 
sharpness or any other metric. 

2. The spatially-varying noise power N(x) can be extracted from slanted-edge regions. 

https://www.imatest.com/docs/veilingglare
https://www.imatest.com/product/imatest-visnir-dynamic-range-chart/
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3. The noise peak in bilateral-filtered images allows them to be distinguished from uniformly-
processed images, so that noise calculations can be selected for optimum results with each. 

4. Information capacity Cn, measured from n:1 contrast slanted edges (typically 4:1) is sensitive to 
chart contrast and exposure, but it can be extended to calculate a maximum information capacity 

Cmax, that is insensitive to these factors. 

5. Reliable Cmax measurements can be obtained from minimally or uniformly-processed (often 

raw→TIFF)  images, but Cmax is less accurate (but still useful) with bilaterally-filtered images 
because of the effects of nonuniform processing on noise measurements and possibly the effects 
of the sharpening peak in strongly-sharpened images. 

6. The Noise image method can measure several image quality factors in addition to information 
capacity:  Noise Power Spectrum (NPS), Noise Equivalent Quantum (NEQ), and Ideal observer SNR (SNRI), 
but it is not intended for use with bilateral-filtered images. It will eventually have its own white 
paper, but for now it’s described in New measurements from Slanted-edges: Information capacity, NPS, 

NEQ, & SNRI.  

The earlier Siemens star method [3] is effective for quantifying artifacts caused by demosaicing, data 
compression (as in JPEG images), and clipping, but it is somewhat slow, sensitive to optical distortion, and 
not well-suited for calculating total information capacity. 

Both slanted-edge methods are fast, work with a vast archive of existing slanted-edge test chart images, 
require no changes in test or analysis procedure (apart from making a selection). They are very 

convenient for measuring total information capacity Ctotal. 

The Siemens star and slanted-edge methods have similar relative trends (for comparing cameras).  

Camera information capacity is still a novel measurement. Significant effort will be required to make it 
better known and give it traction in the industry. But despite its unfamiliarity, the units of camera 
information capacity— information bits per pixel (or total image) for a specified ISO speed— are intuitive 
and easy to understand.  

We would like to see information capacity — either expressed as bits per pixel or megabits total at 
specified ISO speeds (exposure indices) or light (lux) levels — become an integral part of a standard 
camera specifications, particularly for machine vision applications. Using information capacity in this way 
will help in selecting cameras that have maximum performance with minimum pixel count, which will 
improve speed and energy consumption, which is not insignificant. See Computers that power self-
driving cars could be a huge driver of global carbon emissions. 

 

Appendix I. Information theory background 
Because concepts of information theory are unfamiliar to most imaging engineers, we present a very 
brief introduction. To learn more, we recommend a text such as “Information Theory— A Tutorial 
Introduction” by James V Stone, available on Amazon. Shannon’s 1948 and 1949 papers [1],[2] are highly 
readable. 

What is information? 
Information is a measure of surprise or the resolution of uncertainty. The classic example is a coin flip. 

For a “fair” coin, which has a probability of 0.5 for either a head or tail outcome (which we can designate 

https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://news.mit.edu/2023/autonomous-vehicles-carbon-emissions-0113
https://news.mit.edu/2023/autonomous-vehicles-carbon-emissions-0113
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
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1 or 0), the result of such a flip contains one bit of information. Note that two coin flips have four 

possible outcomes (00, 01, 10,11); three coin flips have eight possible outcomes, etc. The number of 

information bits is log2(the number of outcomes), which is the number of flips.  

Now, suppose you have a weirdly warped coin that has a probability of 0.99 for a head (1) and 0.01 for a 

tail (0). Little information is gained from the results of a flip. The equation for the information in a trial 

with m outcomes, where 𝑝(𝑥𝑖) is the probability of outcome i and ∑ 𝑝(𝑥𝑖) = 1𝑚
𝑖=1 , is 

𝐻 = ∑ 𝑝(𝑥𝑖) log2

1

𝑝(𝑥𝑖)

𝑚

𝑖−1

 

H is called “entropy”, and is often used interchangeably with “information”. It has units of bits (binary 

digits). Note that this definition is subtly different from the physical memory element called a “bit”.  

For the fair coin, where p(x1) = p(x2) = 0.5, H = 1 bit. For the warped coin, where p(x1) = 0.99 and p(x2) = 

0.01, H = 0.0808 bits. If the results of the warped coin toss were transmitted without coding, each 

channel bit would contain 0.0808 information bits. That would be extremely inefficient.  

Claude Shannon was one of the genuine geniuses of the twentieth 

century— renowned among electronics engineers, but little known to 

the general public. The medium.com article, 10,000 Hours With Claude 

Shannon: How A Genius Thinks, Works, and Lives, is a great read. There 

are also nice articles in The New Yorker and Scientific American. The 29-

minute video “Claude Shannon – Father of the Information Age” is of 

particular interest to the author of this white paper because it was 

produced by the UCSD Center for Memory and Recording Research, 

which he visited frequently in his previous career.  

Channel capacity 
Shannon and his colleagues developed two theorems that form the basis 

of information theory. 

The first, Shannon’s source coding theorem, states that for any message there exists an encoding of 

symbols such that each channel input of D binary digits can convey, on average, close to D bits of infor-

mation. For the above example, it implies that a code can be devised that can convey close to 1 

information bit for each channel bit—a huge improvement over the uncoded value of 0.0808. 

The second, known as the Shannon-Hartley theorem, states that the channel capacity C, i.e., the theo-

retical upper bound on the information rate of data that can be communicated at an arbitrarily low 

error rate through an analog communication channel with bandwidth W, average received signal 

power S, and additive white Gaussian noise (AWGN) of power N is 

𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = 𝑊 log2 (

𝑆 + 𝑁

𝑁
) = ∫ log2 (1 +

𝑆(𝑓)

𝑁(𝑓)
) 𝑑𝑓 

𝑊

0

 

This equation is challenging twaterffo use because bandwidth W is not well-defined, noise is not white, 

and it applies to one-dimensional systems, whereas imaging systems have two dimensions, at least for 

Siemens stars. Slanted-edge analysis is one-dimensional. 

Figure 15. Claude Shannon 

https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://www.newyorker.com/tech/annals-of-technology/claude-shannon-the-father-of-the-information-age-turns-1100100
https://blogs.scientificamerican.com/cross-check/profile-of-claude-shannon-inventor-of-information-theory/
https://www.youtube.com/watch?v=z2Whj_nL-x8
https://cmrr.ucsd.edu/
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Information_rate
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
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At this point we can hazard a guess as to why camera information capacity has been ignored for cameras. 
For most of its history the hot topic in information theory was the development of efficient codes, which 
didn’t approach the Shannon limit until the 1990s—nearly fifty years after Shannon’s original publication. 
But channel coding is not a part of image capture (though it’s used downstream for image and video 
compression). Also, camera information capacity was not critically important when the primary 
consumers of digital images were humans (though it is related to perceived image quality), but that is 
changing rapidly with the development of new AI and machine vision systems. And finally, convenient 
methods of measuring it didn’t exist. 

Appendix 2. History 
A key early paper that deals with Shannon information capacity is R. Shaw, “The Application of Fourier 

Techniques and Information Theory to the Assessment of Photographic Image Quality,” Now available 
for download, and highly recommended. [7] This article reviews work on information capacity between 
Shannon’s original 1948 publication and 1962, then uses the Shannon-Hartley equation to calculate 
information capacity in bits/cm2 for three types of film. This was brilliant work, but difficult to perform, 
requiring exacting technique for writing patterns on the film, then analyzing them with a microdensito-
meter. For comparison with Fig. 6, camera 2 (3.88μm = 0.000388cm pixel pitch) has 2.9 bits/pixel @ ISO 
400 (the speed of HP3 in 1960) = 19.26 Megabits/cm2 — about three orders of magnitude better than 
HP3.   

R. Jenkin and P. Kane, Fundamental Imaging System Analysis for Autonomous Vehicles, Electronic 
Imaging, 2018. https://www.researchgate.net/publication/325622173 [8] discusses information capacity, 
focusing on modeling. 

DXOMARK has published several papers on information capacity.  

“Sensor information capacity and spectral sensitivities” (2009) [9] introduces CSRGB, the number of different colors a 
sensor can distinguish, based on the eigenvalues of the noise covariance matrix. It contains little about spatial 
resolution. 

Information capacity: a measure of potential image quality of a digital camera (2010) [10] separates information 
capacity into several factors: CSRGB, blur, chromatic aberrations (lateral and longitudinal), light shading, and 
distortions. As outlined in section 6, these factors are measured separately, then combined to obtain information 
capacity, which is much higher than slanted-edge measurements for comparable cameras.  Several of the factors 
(light shading, lateral chromatic aberration, and distortion) can be corrected in the image processing pipeline, and 
the resulting information loss is reflected in slanted-edge measurements.    

RAW Image Quality Evaluation Using Information Capacity (2021) [11] continues the use of raw images for 
calculating information capacity, adding geometrical distortion, loss of sharpness in the field, vignetting and color 
lens shading. MTF is assumed to be a function of distance r from the image center, i.e., the lens is assumed to be 
perfectly centered, which is something we’ve rarely observed in mass-produced lenses. 2½ of the 6 pages are 
devoted to a model of optical distortion correction. The slanted-edge method lets you make fast and accurate 
measurements of information capacity directly from images without and with correction for distortion (or other 
aberrations).  

Imatest has published two papers that led to the development of the slanted-edge method.  

Camera Information Capacity: A Key Performance Indicator for Machine Vision and Artificial Intelligence 
Systems (2020) [3] uses the Siemens Star pattern. It’s particularly good for analyzing the effects of 
artifacts (demosaicing, data compression, saturation, etc.), but it’s slower and less convenient than the 
slanted-edge technique.  

https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.researchgate.net/publication/325622173
https://www.researchgate.net/publication/325622173
https://corp.dxomark.com/wp-content/uploads/2017/11/Information_Capacity_EI2010.pdf
https://corp.dxomark.com/wp-content/uploads/2021/05/3468887-iqsp.pdf
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
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Using images of noise to estimate image processing behavior for image quality evaluation (2021) [12] 
presented a method of illustrating noise anywhere in an image. Difficult to implement because it 
required signal averaging fora large number of images, but it led to the present technique, which 
averages signals in multiple lines of a slanted-edge ROI in a single image.  

Appendix 3. Approximations and assumptions 
There are a number of approximations behind the calculations that will need to be examined in the process of making the 

measurement a standard. We list them here. 

(1) Binning noise correction needs to be verified for a variety of images. 

(2) Noise spectrum. We assume it’s white. In general, we find it’s close to white (from flat areas near edges), with some 

rolloff near Nyquist. When an image is sharpened, high frequency noise is increased, which increases the overall noise 

measurement. We seem to obtain good results, even though the noise spectrum N(f) is not adjusted for the sharpening.  

(3) The average noise power measurement, Navg , is now different for uniformly-processed and bilateral-filtered images. Are 

the current choices optimum?  

(4) What to do about overshoots in strongly-sharpened images? Currently we use the settling levels (away from the edge) for 

Vp-p. We know that strong sharpening has a bad reputation in the machine vision industry, and it can also cause saturation 

for large signals.  

(5) How can we handle pixel offsets (minimum values) in the image? 

(6) How should we handle complex tonal response curves, often with response “shoulders” (highlights where local contrast is 

reduced to improve pictorial quality).  

(7) Going from C4 to Cmax is a big step that invites scrutiny. It seems to be straightforward for uniformly-processed files with 

simple log-linear response curves. But for JPEG files, it can be affected by bilateral-filtering, the tonal response curve, and 

overshoots (if any). 

(8) Should gamma-encoding play a role in information capacity? We suspect that it improves the capacity of files, especially 

files with bit depth of 8, by more uniformly distributing the pixel levels. But it would not affect the camera’s intrinsic 

information capacity. 
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