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Information capacity is a key performance indicator (KPI) for a large variety of 

imaging systems, including 

− Machine vision 

− Automotive (Driver assistance and autonomous vehicles) 

− Artificial Intelligence 

− Robotics 

− Security 

It is important because Machine vision and AI (MV/AI) algorithms operate on 

information, not pixels, making information capacity is a far better predictor of 

system performance than either sharpness (MTF) or noise. 

Imatest has developed a highly convenient method for measuring information 

capacity and related KPIs from the most widely used ISO standard resolution 

test pattern ― the slanted edge.  

  



N. Koren Measuring Information Capacity with Imatest p.  2 

Introduction 
Traditional image quality measurements are based on several image quality factors, the best-known of 

which are sharpness, noise, dynamic range, optical distortion, tonal and color response, and spatial 

uniformity.  

These measurements have proven useful for human vision, where tradeoffs are often required, for 

example, sharpening an image may increase noise, but makes fine features more visible to the human 

eye. Choices are often based on experience; they come down to what looks best, i.e., what has the most 

pleasing appearance for the application. 

Machine Vision/Artificial Intelligence (MV/AI) systems are different. System performance is not 

dependent on image appearance. A more objective metric is required. 

Information 
The information is a metric of how much is learned from a measurement. For example, an individual 

pixel in a blurred image is highly correlated with its neighbors, so little can be learned from its contents. 

But if the image is sharp, it is weakly correlated, and much more can be learned from individual pixels. 

The concept of information was quantified in 1948 and 49 in two celebrated papers by Claude Shannon 

[1],[2]. We present a concise introduction to basic information concepts in Appendix I, below. Earlier 

work on measuring information capacity from Siemens Star images [3] will only be touched on in this 

document. 

 

The slanted edge 
The slanted edge, which is a key part of the ISO 12233 standard, “Photography — 

Electronic still picture imaging — Resolution and spatial frequency responses” [4], is 

the most convenient and widely-used resolution test pattern. It is highly efficient in 

its use of space (with multiple edges, sharpness can be mapped over the image 

surface), and calculations are very fast.  

 

Information capacity is calculated from an overlooked capability of slanted-edge regions that was quite 
literally hidden in plain sight. To understand it, we present a brief summary of the standard ISO 12233 
Edge SFR (e-SFR) algorithm.  

1. The image should be well-exposed, avoiding the dark “toe” and light “shoulder” regions. 
2. Linearize the image by applying the inverse of the encoding gamma curve or using the edge 

itself if the chart contrast is known.  
3. Find the center of the transition between the light and dark regions for each horizontal scan 

line. 
4. Fit a polynomial curve to the center locations. 
5. Depending on the location of the curve on the scan line, add each appropriately shifted scan 

line to one of four bins.  
6. Combine the mean signal in each bin to obtain the 4× oversampled averaged edge for the scan 

lines, 𝜇𝑠(x) =  
1

𝐿
∑ 𝑦𝑙(𝑥 − 𝛿) 𝐿−1

𝑙=0 . 
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7. Modulation Transfer Function MTF(f) is 
calculated by differentiating the averaged 
edge, windowing it, then taking the 
magnitude of the Fourier transform, 
normalized to 1 (100%) at zero frequency. 
MTF(f) is displayed in the lower plots of the 
Edge/MTF figure. Example on the right. 

 

 

 

The overlooked capability of the ISO 12233 binning algorithm:  

the Edge variance method 
By adding the sum of the squares of each scan line, ∑ 𝒚𝒍

𝟐(𝒙), we can calculate the edge variance 
(noise power) σs2(x) and noise amplitude σs(x) in addition to the mean, μs.  This sum is, 

𝜌𝑠(𝑥) =  
1

𝐿
∑ 𝑦𝑙

2(𝑥 − 𝛿) 
𝐿−1

𝑙=0
 

This allows edge variance σs2(x) and noise amplitude σs(x) to be calculated from ∑ 𝑦𝑖(𝑥) and  
∑ 𝑦𝑙

2(𝑥).  

𝜎𝑠
2(𝑥) =

1

𝐿
∑ (𝑦𝑙(𝑥 − 𝛿) − 𝜇𝑠(𝑥 − 𝛿))

2𝐿−1

𝑙=0
=  

1

𝐿
∑ 𝑦𝑙

2(𝑥 − 𝛿) − (
1

𝐿
∑ 𝑦𝑙(𝑥 − 𝛿)

𝐿−1

𝑙=0
)

2𝐿−1

𝑙=0
= 𝜌𝑠(𝑥) − 𝜇𝑠

2(𝑥) 

https://en.wikipedia.org/wiki/Variance#Discrete_random_variable
https://en.wikipedia.org/wiki/Variance#Discrete_random_variable
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The figure on the right shows  

• Upper plot:  the average 4× oversampled edge, 

μs(x). The thick black line is the luminance 
channel. 

• Lower plot:  the noise amplitude (voltage), σs(x). 
The thick black line is the smoothed luminance 

channel. The plot of σs(x) is new: spatially-
dependent noise was previously difficult to 
observe.  

 

 

 

Calculating information capacity from μs(x) 

and σs(x)   
The next step is to calculate the information capacity, C, 
typically in units of bits per pixel, from the signal and 
noise power. C is calculated by substituting the correct values of signal and noise power into the Shannon 
Hartley equation. 

𝐶 = ∫ log2 (1 +
𝑆(𝑓)

𝑁(𝑓)
) 𝑑𝑓 

𝑊

0

 

Where S(f) and N(f) are frequency-dependent signal and noise power, and W is the bandwidth, which is 
always equal to 0.5 cycles/pixel (the Nyquist frequency). Frequency-dependence is entered into S(f)  
using MTF(f) (described below). 

Note that this method, which is called the edge variance method, is the first of two methods for 
calculating C. The second method, called the noise image method, may be slightly more accurate, 
but it only works for uniformly or minimally-processed images; not for bilateral-filtered images 
(mostly in-camera JPEGs), to be described below. 

Signal power S  
The peak-to-peak signal amplitude at low spatial 
frequencies is the measured difference between 
the means of the light and dark regions of the 
linearized slanted edge V(x) = μs(x). 

𝑉𝑝−𝑝 = ∆𝜇𝑠 = 𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘 =  𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛  

The signal power is the variance of this signal. If we 
assume a uniform distribution between the limits 
𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛, which maximizes information 
capacity, we note that the variance of the uniform distribution , which is the average signal power at low 
spatial frequencies, is 

https://en.wikipedia.org/wiki/Continuous_uniform_distribution
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𝜎𝑉
2 = 𝑆𝑎𝑣𝑔(0) = (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)2/12 = 𝑉𝑝−𝑝

2 /12 

The Shannon-Hartley equation uses the average frequency-dependent signal power, S(f).  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝 𝑀𝑇𝐹(𝑓))
2

12⁄  

Signal power S is proportional to the square of the chart contrast if the image has been properly 

linearized. Smax ≤ 1 for linearized images normalized to 1.  

Noise power N  

Noise power N has the same units as signal power S; hence S/N is dimensionless. 

In examining a great many images, we observe two broad classes of images with very different noise 

properties, visible in σs(x). We call them (1) uniformly/minimally processed and (2) bilateral filtered 
images. The value of noise power, N, used to calculate C, is different for the two image types. 

For “black box” cameras with unknown image processing, the table below shows how to distinguish the 
two image types. If the image processing pipeline is known and understood, the table may not be 
necessary. For most measurements, uniformly/minimally processed images are preferred.  

 

The two image types: Plots of σs(x) (4× oversampled)  

Bilateral-filtered image: sharpened near the edge; 
noise-reduced elsewhere. Nearly universal in 
consumer camera JPEG images. Image processing 
appears to increase information capacity C, even 
though information is actually removed. For this 
reason, it is important to use the peak noise 

σs2(x) (as described below) to calculate C. 

Minimally (i.e., uniformly) processed image: 
converted from raw with an external raw 
converter, with no sharpening or noise reduction. 

A strong σs(x) peak is visible near the edge 
transition. (This peak below is stronger than 
usual.) 

Little or no peak is visible in σs(x). Noise increases 
on the right because noise power is proportional 
to signal power (the mean number of photons 
striking each pixel) for linear sensors. 

For calculating C,  
N is the square of the peak noise, smoothed with 
a rectangular kernel of length PW20/2.  

For calculating C, 

𝑁 = mean(𝜎𝑠
2(𝑥)) for all values of x in the ROI. 

  

https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem#Statement_of_the_theorem
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For both images, the solid line is the smoothed noise amplitude, σs(x) 

Avoid for evaluating cameras for MV/AI systems. Recommended, where available. 

Texture: is reduced in low contrast portions of the 
image. Bilateral filtering is the reason texture is 
measured with charts such as Spilled Coins and 
Log F-Contrast: measurements can be very 
different from slanted edges. 

Texture: relatively uniform; affected very little by 
image contrast. Charts such as Spilled Coins and 
Log F-Contrast should have MTF similar to the 
slanted-edge.  

 

Bilateral-filtered images are of interest because we often measure “black box” cameras, where we don’t 
know whether bilateral filtering is present (it’s important to know), but we want to obtain a reasonable 
approximation of C.  

Uniformly/minimally-processed images should be used for evaluating cameras for use in MV/AI systems,.  

Binning noise is a type of quantization noise that affects the Line Spread Function, but has no effect on 
conventional MTF measurements. It is described in Appendix 2, below. 

Bandwidth W  

Bandwidth W is always 0.5 cycles/pixel (the Nyquist frequency). Signals above Nyquist do not contribute 
to the information content; they can reduce it by causing aliasing — spurious low frequency signals like 

Moiré that can interfere with the true image. Frequency-dependence comes from MTF(f).  

Combining Savg(f), N, and W to obtain information capacity C 
Savg(f), N, and W are entered into the Shannon-Hartley equation. 

𝐶 = ∫ log2 (1 +
𝑆𝑎𝑣𝑔(𝑓)

𝑁
)

0.5

0

df ≅ ∑ log2 (1 +
𝑆𝑎𝑣𝑔(𝑖∆𝑓)

𝑁
) ∆𝑓

0.5/∆𝑓

𝑖=0

  

MTF(f) can take a large bite out of C, especially since it is squared in the above equation. Because of its 

frequency-dependence, it is sometimes confused with bandwidth.  

C is measured with relatively low contrast test charts to ensure the camera is operating in its linear 

region and to minimize errors from saturation. For most of our work, we use charts with a 4:1 contrast 

ratio (Michelson contrast =
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥+𝑉𝑚𝑖𝑛
= 0.6), following the ISO 12233 standard [4].  

Since VP-P is directly proportional to chart contrast, we label C according to the contrast ratio: Cn for n:1 

contrast ratio. We use C4 throughout this document.  

By measuring C4 from a variety of exposures, we quickly learned that (a) C4 is highly dependent on the 

exposure level, and (b) C4 does not represent the maximum information capacity of the camera. 

Maximum information capacity Cmax ― a more consistent metric 
The strong dependence of C4 on exposure reduces its value as a performance metric. The reasons for 

this dependence are (1) voltage range ΔV = Vp-p is a strong function of exposure, and (2) noise power N is 

also a function of exposure. 
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We have developed a new metric for maximum information capacity: Cmax, that is nearly 

independent of exposure. It is obtained in two steps, shown inside a “green for geeks” box below, 

which can be skipped by most readers. 

Step1:  Replace the measured peak-to-peak voltage range Vp-p with the maximum allowable value,  
𝑉𝑝−𝑝_𝑚𝑎𝑥 = 1. This may seem like a simplification, but it works well for most cameras. Referring to the 

section on Signal Power S, 

Step 2:  Replace the measured noise power N with Nmean, the mean of N over the range 0 ≤ V ≤ 1 (where 

1 is the maximum allowable normalized signal voltage V). The general equation for noise power N as a 

function of V for linear image sensors is 

𝑁(𝑉) = 𝑘0 + 𝑘1𝑉 

k0 is the coefficient for constant noise (dark current noise, Johnson (electronic) noise, etc.). k1 is the 
coefficient for photon shot noise. Noise powers N1 = σ12 and N2 = σ22 are measured along with signal 
voltages V1 and V2 on either side of the edge transition.  

Assuming  𝑁1 = 𝑘0 + 𝑘1𝑉1  and  𝑁2 = 𝑘0 + 𝑘1𝑉2  we can use two equations in two unknowns to solve for 
k0 and k1. 

𝑘0 =
𝑁1𝑉2 − 𝑁2𝑉1

𝑉2 − 𝑉1
 ;     𝑘1 =

𝑁2 − 𝑁1

𝑉2 − 𝑉1
 

N closely approximates the noise used in noise calculation method (1) (used for minimally-processed 
images that don’t have bilateral filtering). But if method (2) (the smoothed peak noise) is used 
(recommended for in-camera JPEGs with bilateral filtering), N is generally larger, and must be modified.  

𝑁 →  𝑘𝑁𝑁,   where  𝑘𝑁 =  𝑁𝑚𝑒𝑡ℎ𝑜𝑑_2/𝑁𝑚𝑒𝑡ℎ𝑜𝑑_1  

In bilateral-filtered images (most JPEGs from consumer cameras), lowpass filtering (for noise reduction) 
may be affect N1 and N2 strongly enough so the equation 𝑁(𝑉) = 𝑘0 + 𝑘1𝑉 does not reliably hold. This can 
adversely affect the accuracy of Cmax. 

The mean noise power Nmean over the range 0 ≤ V ≤ 1 for calculating Cmax is 

𝑁𝑚𝑒𝑎𝑛 = ∫ 𝑁(𝑉) 𝑑𝑣
1

0

∫ 𝑑𝑣
1

0

= ∫ (𝑘0 + 𝑘1𝑉)𝑑𝑣 =
1

0

⁄ 𝑘0 + 𝑘1/2  

Using   𝑁 = 𝑁𝑚𝑒𝑎𝑛 , 𝑉𝑝−𝑝_𝑚𝑎𝑥 = 1   and   𝑆𝑎𝑣𝑔(𝑓) = 𝑀𝑇𝐹(𝑓)2/12 ,  

𝐶𝑚𝑎𝑥 = ∫ log2 (1 +
𝑀𝑇𝐹(𝑓)2

12 𝑁𝑚𝑒𝑎𝑛
)

0.5

0

df ≅ ∑ log2 (1 +
𝑀𝑇𝐹(𝑖∆𝑓)2

12 𝑁𝑚𝑒𝑎𝑛
) ∆𝑓

0.5/∆𝑓

𝑖=0

 

Because noise in High Dynamic Range (HDR) sensors does not follow the simple equation for linear sensors, 
we recommend giving the image sufficient exposure so the brighter side of the edge is close to (but 
definitely below) saturation, then leaving N unchanged (Nmean = N).  

Cmax is nearly independent of exposure for minimally or uniformly-processed images with linear sensors, 
where noise power N is a known function of signal voltage V.  

 

Consistency of Cmax 
We performed a set of analysis on two cameras with a range of exposures (indicated by Vmean). The 

results showed that Cmax was highly consistent with exposure for the raw→TIFF images (which were not 

bilateral-filtered), but less consistent with the bilateral-filtered (JPEG) images. C4 varied as expected. 
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Because of the inconsistency, we don’t recommend using bilateral-filtered images where accurate 

information capacity measurements are required.  

C4 and Cmax for minimally processed raw→TIFF and JPEG images for two cameras 

  
10 MP compact camera 16 MP micro four-thirds camera 

Cmax may be inaccurate if the image is incapable of spanning the entire range of Digital Numbers (DNs), 

for example, 0-255 for images with bit depth = 8. None of the information capacity measurements work 

if local tone mapping is applied.   

Obtaining Results 
 

The settings below apply to both the Edge Variance and Noise Image method. As 
long at the image is known to be minimally or uniformly-processed, the user 
doesn’t need be concerned about the method. 

 

Now that we have described the two major results from the Edge Variance method: Information capacity 

(C4 and Cmax,) and spatially-dependent noise (power σs2(x) or amplitude σs(x)), we show how to obtain 

them. They can be calculated in any Imatest slanted-edge module, including SFR (manual ROI detection), 

and SFRplus, eSFR ISO, Checkerboard, or SFRreg (auto ROI detection). We focus on the settings in the 

Auto detection modules (the locations for SFR are slightly different).  

Test chart edge contrast should be between 2:1 and 10:1, with 4:1 (the ISO 12233 e-SFR standard [4]) 

strongly recommended. General good technique is recommended for acquiring the image: lighting 

should be uniform and glare-free; the image should be well-exposed; sturdy camera support should be 

used; ROIs should be reasonably large: at least 30x60 pixels is recommended.  

To turn on the calculations (this works with both methods),  
Make the selection in the Setup window, 

https://www.imatest.com/docs/sfr_instructions
https://www.imatest.com/docs/sfrplus_instructions
https://www.imatest.com/docs/esfriso_instructions
https://www.imatest.com/docs/checkerboard_instructions
https://www.imatest.com/docs/sfrreg_instructions
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― or ― in the More settings window. 

 

• The first selection turns off all information capacity calculations. This is the default at the time of the 23.1 

release. We may change it. 

• The remaining selection determines what gets displayed in the Edge and MTF and Edge & Info capacity 

noise plots. 

• The second selection is reasonable when you don’t know whether your image is bilateral-filtered. 

• The fifth (last) selection displays the NEQ information capacity (described below) in the Edge/MTF figure, 

which is slightly more accurate than the Edge Variance C. It’s the best selection for minimally/uniformly-

processed images. 

For the two plots, Information capacity is displayed next to the Edge (upper) plot. 

 
Edge & information capacity noise plot 
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Total information capacity 

The results we have presented thus far are for information capacity C in bits per pixel. The total 

information capacity, Ctotal, for the entire image takes variations in C over the image into account. 

To obtain Ctotal for auto-detected slanted-edge modules, SFRplus, eSFR ISO, and Checkerboard, select 3D 

& contour plots, then select Edge info Cap C_max (on the right of the Rescharts window, below). The 

mean value of Cmax for the image will also be displayed. For the information capacity plots (C4 and Cmax), 

the zone weights are always [1, 1, 1]. 

𝐶𝑡𝑜𝑡𝑎𝑙 = mean(𝐶) × megapixels. 

 

The mean information capacity Cmax (unweighted for information capacity calculations) is 2.847 

bits/pixel. Since the camera has 16 Megapixels, total capacity CmaxTotal for the Luminance (Y) channel = 

45.44 MB.  

Signal averaging 
This well-known technique can be used to improve the accuracy and consistency for measurements of 

noisy images for both the Edge Variance and Noise image methods. 

Extremely noisy images, typically acquired in dim light or at high Exposure Indices, may result in 

inaccurate measurements of MTF and C. Signal averaging, where n identical captures of the same image 

are averaged, is a classic technique for reducing the effect of noise and obtaining better measurements 

from noisy images. When n images are averaged, the sum of the signal voltage and the sum of the noise 

power (noise voltage2), which is uncorrelated, are both proportional to n. This causes noise voltage to be 

proportional to √𝑛 , so that SNR increases by √𝑛:  by 3dB whenever n is doubled. To obtain correct 

information capacity measurements when the signal is averaged, the noise power is multiplied by n in 

the information capacity calculation.  

https://www.imatest.com/docs/sfrplus_instructions
https://www.imatest.com/docs/sfrplus_instructions
https://www.imatest.com/docs/checkerboard_instructions
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This effect is illustrated below for a camera with a one-inch sensor, which was imperfectly focused, at ISO 

12800. A single image is shown on the left. Note that MTF is rough and has significant high frequency 

noise bumps. For the average of 8 images is shown on the right, information capacity C is slightly 

reduced because MTF is better behaved, i.e., there is less spurious high frequency response. 

  

 

Some key results of the Edge Variance method 
We tested three cameras that produced both raw and JPEG output for information capacity C as a 
function of Exposure Index (ISO speed setting).  

Cameras used in the tests 

1. Panasonic 
Lumix LX5 

2.14 µm pixel pitch. An older (2010) compact 10.1-megapixel camera with a Leica f/2 
zoom lens set to f/4. 

2. Sony A6000 3.88 µm pixel pitch. A 24-megapixel micro four-thirds camera with a 60mm Canon 
macro lens set to f/8 

3. Sony A7Rii 4.5 µm pixel pitch. A 42-megapixel full-frame camera with a Backside-Illuminated 
(BSI) sensor and a 90mm f/2.8 Sony macro lens set to f/8 
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We captured both JPEG and raw images, which were 
converted to 24-bit sRGB (encoding gamma ≌ 1/2.2) 
TIFF images (designated as raw→TIFF) with LibRaw, 
with minimal processing (defined as no sharpening, no 
noise reduction, and a simple gamma-encoding 
function). Results for 48-bit Adobe sRGB conversion 
were nearly identical. 

The image on the right, which was analyzed in 
“Camera Information Capacity: A Key Performance 
Indicator for Machine Vision and Artificial Intelligence 
Systems” [3], contains a 50:1 contrast Siemens star 
and four 4:1 contrast slanted edges on the sides. We 
used the upper-left slanted edge for most tests. The 
average background of the chart is close to neutral 
gray (18% reflectance) to ensure a good exposure (exposure compensation may be applied if needed and 
available). 

Results for JPEG and minimally-processed raw→TIFF images 
The two figures below show results for the luminance (Y = 0.2125∙R + 0.7154∙G +0.0721∙B) channel as a 
function of ISO speed (Exposure Index) for the raw→TIFF images (solid lines) and JPEG images (dotted 

lines). For the raw→TIFF images the relationship between ISO speed and C is similar for all three cameras. 

 

C4  4:1 slanted edge 
 

The information capacity for 4:1 contrast 

edges, C4, shows similar trends to Cmax, but 
since the relatively low 4:1 contrast uses 
only a fraction of the available signal level, 

C4 is lower than either measurement. It is 
also highly sensitive to exposure. 

 

 

 

 

https://www.libraw.org/
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
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Cmax  maximum information capacity 
 

Cmax is the maximum information capacity 

of the camera, derived from measurements 

of 4:1 edges. It is relatively accurate for 

minimally or uniformly-processed (often 

raw→TIFF) images, and is much less sensi-

tive to exposure than C4, making it robust 

and well-suited for comparing the 

performance of different cameras.  

Both C4 and Cmax give the expected results: C 

is higher for the higher quality (larger pixel) 

sensor, and decreases for increased 

Exposure Index (less exposure and more 

analog gain, resulting in poorer SNR). 

 

Sharpening 
Simple sharpening, which has the same effect on the signal and noise response, would not be expected 

to have a strong effect on C. This is indeed the case. 

The two examples below show that sharpening has little effect on slanted-edge information capacity, as 
expected for a valid measurement. The two images (originally a minimally-processed TIFF) have been 
strongly USM sharpened in the Imatest Image Processing module with Radii = 1 and 2 and Amount = 2. 

The original unsharpened TIFF has C4 = 2.06 and Cmax = 3.82 b/p. 

  
TIFF sharpened with Radius = 1, Amount = 2. TIFF sharpened with Radius = 2, Amount = 2. 

 

https://www.imatest.com/docs/image-processing/
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This highlights another benefit of information capacity measurements. Unlike MTF50, they do not 

reward excessive sharpening, which creates “halos” near edges. These halos improve the human 

perception of sharpness when applied in moderation, but create artifacts that degrade image 

appearance when applied in excess [9]. They also have a bad reputation for machine vision applications.  

 

Summary of the Edge Variance method 
• The Edge Variance method is the first of two methods for calculating information capacity, C, 

from slanted edges. 

• It has a limited set of results. 

o Information capacities C4 and Cmax, 

o A plot of spatially-dependent noise power σs2(x) or amplitude σs(x), which can be 

useful for determining if the image has been bilateral-filtered. 

• Produces an interesting approximate measurement of C for bilateral-filtered images, but 

uniformly/minimally processed images give the most accurate results, and should always be 

used when a camera is being evaluated for use in MV/AI systems. 

• Results are simple and convenient to obtain, even though the algorithms behind them can be 

complex. For the most part, the Imatest user doesn’t need to be concerned about the 

calculation method. 

 

The Noise Image method of calculating information capacity-related 

metrics 
The Noise Image method is the second of two methods for calculating information capacity and related 

figures of merit. It was developed shortly after the Edge Variance method. It offers a particularly rich set 

of measurements. 

This method involves inverting the ISO 12233 binning procedure. Noting that the 4× oversampled edge 

was created by interleaving the contents of 4 bins, each of which contains an averaged (noise-reduced) 

signal derived from the original image, we apply an inverse of the binning algorithm to set the contents 

of each scan line to its corresponding interleave (Inverse binned… ROI, below). Since the inverse-binned 

image is a nearly noiseless replica of the original image, we can create a noise image by subtracting the 

inverse-binned image from the original image (which must be corrected for illumination nonuniformity in 

the direction of the edge). This image is shown, adjusted to make the mean (zero) value middle gray, as 

the Noise image ROI, on the right below.  

The three images are shown below. The noise image (below-right), which has a mean value of 0, has 

been lightened and contrast-boosted for display. The other images are displayed with gamma-correction. 

https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#method_noise_image
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#method_noise_image
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Original ROI                               (2) Inverse-binned /                     (3) Noise image ROI 
de-interleaved / reverse-projected ROI 

These images allow several key image quality parameters to be calculated, including Noise Power 

Spectrum and Noise Equivalent Quanta, well-known in medical imaging systems, and described in an 

excellent review paper by Ian Cunningham and Rodney Shaw [10]. These measurements are not well-

known outside of medical imaging, in part because they have been difficult to measure. 

Displaying the noise image results 
The key Noise image results are in the Noise Spectrum, NEQ, SNRi plot, which has numerous display 

options. 

This plot displays two results: one at the top and one at the bottom. The contents of the upper and 

lower plots are selected In the Display area on the right of the Rescharts window, shown in the middle of 

the table below. 

Upper or Lower plot Display settings Lower plot-only 

(All these results available in 

either the upper or lower plot.) 

Noise Voltage Spectrum 

Noise Power Spectrum (NPS)* 

     (shown above) 

Noise Equivalent Quanta (NEQ) 

MTF* 

Edge linearized unnormalized* 

Noise autocorrelation 

 

Original image crop (1) 

Unbinned image crop (1) 

      (Reverse-projected; low noise) 

Noise image crop (1)  (Original – Noise) 

Results summary (1)  (Shown above) 

SNRi 2D square w x w 

SNRi 2D rectangle w x 4w 

Square visibility image (1) 

Square visibility – LARGE (1) 

Noise Voltage Spectrum 

https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.imatest.com/docs/information-slanted-edges-instructions/#upperplots
https://www.imatest.com/docs/information-slanted-edges-instructions/#lowerplots
https://www.imatest.com/docs/information-slanted-edges-instructions/#nps
https://www.imatest.com/docs/information-slanted-edges-instructions/#nps
https://www.imatest.com/docs/information-slanted-edges-instructions/#neq
https://www.imatest.com/docs/information-slanted-edges-instructions/#mtf
https://www.imatest.com/docs/information-slanted-edges-instructions/#edgelin
https://www.imatest.com/docs/information-slanted-edges-instructions/#autocorr
https://www.imatest.com/docs/information-slanted-edges-instructions/#noiseimage
https://www.imatest.com/docs/information-slanted-edges-instructions/#noiseimage
https://www.imatest.com/docs/information-slanted-edges-instructions/#noiseimage
https://www.imatest.com/docs/information-slanted-edges-instructions/#resum
https://www.imatest.com/docs/information-slanted-edges-instructions/#snri
https://www.imatest.com/docs/information-slanted-edges-instructions/#snri
https://www.imatest.com/docs/information-slanted-edges-instructions/#objvis
https://www.imatest.com/docs/information-slanted-edges-instructions/#objvis
https://www.imatest.com/wp-content/uploads/2023/03/rescharts_didplay_area-22.png


N. Koren Measuring Information Capacity with Imatest p.  16 

Upper or Lower plot Display settings Lower plot-only 

SNRi 2D square w x w 

SNRi 2D rectangle w x 4w 

*for checking inputs to NEQ calculation 

(These plots are available elsewhere.) 

Noise Power Spectrum (NPS) 

Noise Equiv. Quanta (NEQ) 

MTF* 

Edge linearized unnormalized* 

Noise autocorrelation  

 (1) Plots displayed in dark red available in upper plot-only. 

Here is an example, with Noise Power Spectrum (NPS) displayed on the top and Results summary 

displayed on the bottom. 

 
Noise Spectrum, NEQ, SNRi plot with Noise Power Spectrum (NPS) displayed on the top 

and Results summary (showing the two different information capacity calculations) on the bottom. 

 

We now list the measurement (Figures of Merit) available with the Noise image method. Some are 

unfamiliar, and some are experimental.  

 

https://www.imatest.com/docs/information-slanted-edges-instructions/#upperplots
https://www.imatest.com/docs/information-slanted-edges-instructions/#lowerplots
https://www.imatest.com/docs/information-slanted-edges-instructions/#snri
https://www.imatest.com/docs/information-slanted-edges-instructions/#snri
https://www.imatest.com/docs/information-slanted-edges-instructions/#mtf
https://www.imatest.com/docs/information-slanted-edges-instructions/#edgelin
https://www.imatest.com/docs/information-slanted-edges-instructions/#autocorr
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Noise Voltage or Power Spectrum (NPS) 
 The NPS (upper plot above) is displayed above 

with a logarithmic x-axis and on the right with a 

linear x-axis (selectable by a checkbox). The Noise 

Power and Voltage Spectrum plots have the same 

shape: only the y-axis labels are different. 

The 1D Noise Power or Voltage spectrum is 

derived from a 2D Fourier transform (FFT) of the 

noise image. The initial 2D FFT has zero frequency 

at the image center. The image is divided into 

several annular regions, and the average noise 

power is found for each region. NPS is used in the NEQ and SNRi calculations. 

 

Noise Equivalent Quanta (NEQ) 
NEQ is a figure of merit used in medical imaging, but is unfamiliar in general imaging. It is described in a 

2016 paper by Brian Keelan [5] and in an earlier paper by Cunningham and Shaw [10]. Essentially, it is a 

frequency-dependent Signal-to-Noise (power) Ratio, in contrast to MTF, which is signal amplitude 

response-only.  

Units are the equivalent number of detected quanta that would generate the measured SNR when 

photon shot noise is dominant.  

𝑁𝐸𝑄(𝑓) =
𝜇2𝑀𝑇𝐹(𝑓)2

𝑁𝑃𝑆(𝑓)
 

where the mean linear signal, μ, can be defined in either of two ways, depending on how NEQ is to be 

interpreted.  

In the standard definition of NEQ, where NPS is 

dominated by photon shot noise, 𝜇2 = 𝑉𝑚𝑒𝑎𝑛
2 =

�̅�2, where �̅� is the mean count of the detected 

quanta. But because noise is uncorrelated, 𝑁𝑃𝑆 =

𝜇 = �̅�.  Therefore, NEQ is proportional to the 

count of detected quanta, �̅�. For example, NEQ = 

200 corresponds to a mean of �̅� = 200 detected 

quanta detected at each pixel (assuming that the 

noise is dominated by photon shot noise).  

The above equation, 𝜇 = 𝑉𝑚𝑒𝑎𝑛 = �̅�, is appropriate if NEQ is to be used for calculating DQE (Detective 

Quantum Efficiency), where 𝐷𝑄𝐸(𝑓) = 𝑁𝐸𝑄(𝑓)/�̅�𝑖., where �̅�𝑖 is the mean number of quanta incident 

on each pixel. Measuring DQE requires a separate (and very exacting) measurement of �̅�𝑖, which we may 

add in the future. 

Getting familiar with the meaning and use of NEQ may take some time. Characterization of imaging 

performance in differential phase contrast CT compared with the conventional CT: Spectrum of noise 

https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
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equivalent quanta NEQ(k) [16] by Tang et. al. is an excellent example of how NEQ is used in medical 

imaging. 

The NEQ plot is rough because of the relatively small size of the slanted-edge ROIs (Regions of interest). 

It can be improved using Signal Averaging. 

Information capacity from NEQ:  

A special form of NEQ, NEQinfo(f) (not plotted), calculated using 𝜇 = 𝑉𝑃−𝑃/√12 (to be consistent with 

the Edge Variance calculation), is used to calculate information capacity, CNEQ. 

𝐶𝑁𝐸𝑄 = ∫ log2(1 + 𝑁𝐸𝑄𝑖𝑛𝑓𝑜(𝑓)) 𝑑𝑓
𝑊

0

 

where bandwidth W is the camera’s Nyquist frequency, W = fNyq = 0.5 Cycles/Pixel. [Author’s note: I 

thought I’d discovered this connection, but it’s in papers on PET scanners and Digital Mammography by Christos 

Michail et. al. [6],[7]. Not papers anybody outside medical imaging is like encounter.] 

  

The key results, C4(NEQ) and Cmax(NEQ), are included in 

the Results summary. They are slightly different from the 

Edge Variance results, most likely because the calculated 

Noise Power Spectrum, NPS(f), is used. (The Edge 

Variance calculation assumes constant NPS).  

 

Ideal Observer SNR (SNRi)    
is a measure of the detectability of small objects. It is described in papers by Paul Kane [14] and Orit 

Skorka and Paul Kane [15]. The two-dimensional equation in [15] gives the correct results. 

𝑆𝑁𝑅𝑖2 = ∬ (
𝜇2 Δ𝑆2(𝜈𝑥 , 𝜈𝑦)𝑀𝑇𝐹2(𝜈𝑥 , 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦)
) 𝑑𝜈𝑥  𝑑𝜈𝑦 

 μΔS(νx,νy) = G(νx,νy) is the Fourier transform of 

the object to be detected; defined below.  

MTF(ν) and NPS(ν) are defined in one 

dimension, where spatial frequency 𝜈 =

√𝜈𝑥
2 + 𝜈𝑦

2 has units of Cycles/Pixel, and the 

linearized signal is normalized to a maximum 

value of 1. 

The object to be detected is typically a rectangle 

of dimensions w × kw, where k = 1 (for a square) 

or 4 for a 1×4 aspect ratio rectangle. Its amplitude 

(for the initial analysis) is the peak-to-peak 

voltage of the slanted edge, ΔQ = VP−P which is typically obtained from a chart with a 4:1 contrast ratio.  

SNRI curves, Micro 4/3 camera, ISO 100 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396709/
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
https://www.imatest.com/wp-content/uploads/2023/04/snri_square_iso-100.png
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Δ𝑔(𝑥, 𝑦) = Δ𝑄 ⋅ rect (
𝑥

𝑤
) ⋅ rect (

𝑦

𝑘𝑤
) 

where  rect(x) = 1   for   -1/2 < x < 1/2 ;  0 otherwise. 

G(νx,νy) is the Fourier transform of the object to be detected, Δg(x,y). It is expressed in two dimensions. 

𝐺(𝜈𝑥 , 𝜈𝑦) = 𝑘𝑤2 Δ𝑄 
sin(𝜋𝑤𝜈𝑥)

𝜋𝑤𝜈𝑥
 
sin(𝜋𝑘𝑤𝜈𝑦)

𝜋𝑘𝑤𝜈𝑦
 

SNRi2 is calculated numerically by creating a two-dimensional array of frequencies (0 to 0.5 c/p in 51 

steps) that has νx on the x-axis νy on the y-axis, and is filled with 𝜈 = √𝜈𝑥
2 + 𝜈𝑦

2. These frequencies are 

used to create a 2D array that can be numerically summed [15].  

𝑆𝑁𝑅𝑖2 = Δ𝜈𝑥 Δ𝜈𝑦  ∑ ∑
𝑀𝑇𝐹2(𝑖, 𝑗) 𝑉𝑃−𝑃

2

𝑁𝑃𝑆(𝑖, 𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1
 Δ𝑆2(𝑖, 𝑗) 

SNRi is displayed for each color channel for w from 1 to 40 in increments of approximately the square 

root of w (1, 1.4, 2, …), typically, w = 1, 2, 3, 4, 7, 10, 14, 20. 

Unlike C, SNRi is affected by signal processing (sharpening, etc.), but we have yet to find a sharpening 

setting that consistently improves SNRi. More work is needed.  

 

SNRi information capacity: CSNRi  (new and experimental) 
 
CSNRi is an experimental measurement that takes 
advantage of the fact that the argument of 
the SNRi2 integral, 

𝜇2 Δ𝑆2(𝜈𝑥, 𝜈𝑦)𝑀𝑇𝐹2(𝜈𝑥 , 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥, 𝜈𝑦)
 , 

has units of Signal-to-Noise Ratio power, and 
hence can be used in the Shannon-Hartley 
equation, 

 

𝐶𝑆𝑁𝑅𝑖 = ∫ ∫ log2 (1 +
𝜇2 Δ𝑆2(𝜈𝑥, 𝜈𝑦)𝑀𝑇𝐹2(𝜈𝑥, 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥, 𝜈𝑦)
) 𝑑𝜈𝑥 𝑑𝜈𝑦 

The numerical evaluation of CSNRi follows the same steps as SNRi2, above. 

CSNRi is not yet fully validated, but it is promising (we are working on it). Plots are generally more 
readable and easier to interpret than SNRi. For images with poor MTF, CSNRi increases more slowly for 
small widths and reaches a lower asymptotic value. The (rough) asymptotic value is close (though not 
identical) to C4(NEQ). CSNRi should be available in the pilot program by June 2023. (Not sure of the 
release schedule).  

Here is an example from two images from a camera with a one-inch sensor described in FocusField.  

https://www.imatest.com/docs/focusfield/
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Out-of-focus                                                                   In-focus 

Note that CSNRi increases more rapidly with w for the in-focus image and approaches a higher asymptotic 
value (≈1.2 vs. 0.47). 
 

 

Object visibility    
The goal of SNRi measurements is to predict object visibility for 

small, low contrast squares or 4:1 rectangles The SNRi prediction 

begs for visual confirmation. A simulated image that can do this is 

shown in Figure 3 of a classic SNRi paper [8]. 

We have developed a display for Imatest that does this with a real 

slanted-edge image. Despite the trickery, the data is directly from 

the acquired image. 

We show two sets of results: one for a relatively low noise image and one high noise image (both from a 

camera with Micro Four-Thirds sensors, at ISO 100 and 12800, respectively. The sides of the squares 

are w = 1, 2, 3, 4, 7, 10, 14, and 20 pixels. The original chart has a 4:1 contrast ratio (light/dark = 4), 

equivalent to a Michelson contrast CMich = (light-dark)/(light+dark) = 0.6. The outer squares 

have CMich = 0.6. The middle and inner squares have CMich = 0.3 and 0.15, respectively. 

How to use these images — Inconspicuous magenta bars are designed to help finding the small squares, 

which are hard to see. The yellow numbers are the square widths in pixels. The SNRi curves (initially, at 

least) represent the chart contrast — with 4:1 (the ISO 12233 standard [4]) strongly recommended. The 

outer patches correspond to the SNRi curves, where, according to the Rose model [10], SNRi of 5 (14 dB) 

should correspond to the threshold of visibility.  

https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
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Low noise image, ISO 100                                                  Noisy image, ISO 12800 

 

 

 

 

The SNRi curve on the right is for the noisy ISO 

12800 image on the right, above. The w = 1 

squares are invisible; the w = 2 and 3 squares 

are only marginally visible, and w = 4 squares 

are clearly visible. In the plot, SNRi at w = 2 is 

0-5 dB; it reaches 5-10 dB for w = 3; close to the 

expectation that the threshold of visibility is 

around 14 dB. 

 

 

Only original pixels were used in these two images, but we used a little smoke and mirrors to 

make the squares that have the same blur as the device under test. 

How the squares were made 
1. Expand the image if needed (if the original is less than 170 pixels wide) to make room for all the 

squares by adding mirrored versions of image to the left and right to the sides of the image. If 
needed, add a cropped vertical mirrored image to the bottom.  

2. Create a (horizontal) mirror of the full image. This is the “mirror” part. 
3. Create a mask consisting of ideal w×w squares. The background is 0 and the squares are 1. The 

sides are sharp. 
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4. Blur the squares with the MATLAB filter2 function. This is the “smoke” part. Determining the blur 
kernel was challenging. We found that we couldn’t get good results by just using the 1D Line 
Spread function (LSF) in 2D. A more complex transformation was required.  

5. Linearize the two images (remove the gamma encoding). 
6. Combine them using the mask, keeping the original image where the mask = 0, using the mirrored 

image where the mask = 1, and blending them elsewhere.  
7. Reapply the gamma encoding. 

 

 

Noise autocorrelation 
This plot has been added to examine the 

hypothesis that the noise power spectrum 

(and autocorrelation) indicate the amount of 

electrical crosstalk of image sensor when the 

effects of demosaicing and fixed-pattern 

noise are removed and the primary noise 

source is photon shot noise. The idea behind 

the hypothesis is that light incident on the 

sensor is entirely uncorrelated, so that if 

there were no crosstalk, the noise would be 

white.  

This image used for the first plot was white-

balanced. The curve is the |inverse Fourier 

transform| of the noise spectrum, based on the 

author’s understanding of the Wiener-

Khinchin theorem.  

The image on the (lower) right was not White-Balanced. The red channel has a larger autocorrelation 

distance than the other channels, as we would expect.  Click on the image to enlarge it. 

A similar autocorrelation plot can also be obtained from a flat field image in the Image Statics module. 

Illumination nonuniformity has been corrected to decrease the (spurious) autocorrelation at large 

distances. 

 

 

MTF(f) and Edge Voltage V are now shown here because they are included in the standard calculations. 

 

Key measurements from the Noise image method 
NEQ(f) is relatively unfamiliar outside of medical radiology. 

Measurement Description 

https://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem
https://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem
https://www.imatest.com/support/docs/23-1/image-statistics/
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Noise Power Spectrum, NPS(f) 
(or Noise Voltage Spectrum) 

Used in NEQ and SNRi calculations. NPS was implicitly assumed to be constant 

(white noise) in the Edge Variance method. 

Noise Equivalent Quanta, 

NEQ(f) and NEQinfo(f)  

A measure of frequency-dependent signal-to-noise ratio (SNR).  

𝑁𝐸𝑄(𝑓) = 𝜇2 𝑀𝑇𝐹(𝑓)2/𝑁𝑃𝑆(𝑓), where μ = Vmean has been used for 

quantifying medical image quality, but is much less familiar in general 

imaging. NEQ(f) is equivalent to the number of quanta detected by the sensor 

when photon shot noise is dominant. It is appropriate for calculating Digital 

Quantum Efficiency (DQE), when the density of quanta reaching the image 

sensor is known. NEQinfo(f) is derived from μ=VP−P/12−−√, making it well-

suited for calculating information capacity CNEQ. 

Information capacities 

C4(NEQ) and Cmax(NEQ)  

correspond to C4 and Cmax from the Edge variance method. Derived 

from NEQinfo(f). They are close, but not identical. 

Ideal observer Signal-to-Noise 

Ratio, SNRi  

From Kane [14] and Skorka and Kane [15], “The Ideal Observer is a Bayesian 

decision maker that maximizes the statistical precision of a hypothesis test with 

two possible outcomes.” SNRi is a metric of the detectability of small objects 

(squares or rectangles), typically of low contrast. 

Object visibility 
Images of low contrast squares of various sizes: a visual indicator of object 

visibility. Correlates with SNRi.  

Noise autocorrelation  
The inverse Fourier transform of the Noise Voltage Spectrum. May be related to 

sensor electrical crosstalk. 

 

Summary of the noise image method 
• The Noise Image method is the second of two methods for calculating information capacity, C, 

from slanted edges. 

• It only gives reliable results with uniformly or minimally processed images, which can be 

distinguished from bilateral-filtered images by the absence of a peak in σs2(x) or σs(x) displays. 

• It produces a rich set of related results, including Noise Power Spectrum (NPS), Ideal observer 

SNR (SNRi), Noise Equivalent Quanta (NEQ), and a second set of information capacity 

measurements, derived from NEQ, that can be compared with the Edge variance results (they 

are slightly more accurate because NPS is not assumed to be constant).  

• Some of the results are new and unfamiliar. It may take some time before we have a full 

understanding of their value. 

 

Overall summary 
We have presented several new Figures of Merit for imaging systems that are especially applicable to 

Machine Vision/Artificial Intelligence systems. The most important of these is information capacity, 

which combines sharpness and noise, and is calculated in two different ways (with similar results). 

https://journals.sagepub.com/doi/abs/10.1093/jicru_os28.1.50?journalCode=crub
https://journals.sagepub.com/doi/abs/10.1093/jicru_os28.1.50?journalCode=crub
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Information capacity can be used to optimize camera selection for machine vision applications. This 

involves specifying the required information capacity, then finding the camera that meets this spec with 

the minimum number of pixels, which will result in the fastest calculations, lowest power consumption, 

and—perhaps most importantly—minimum cost. 

The new measurements are extremely easy to obtain from any of Imatest’s slanted-edge analyses. All 

you need to do is turn them on, and they appear in the Edge/MTF plot. But the math and algorithms 

behind the measurements contain concepts that are unfamiliar to most imaging scientists. They are 

worth learning. 

Compared to the earlier Siemens star information capacity method [3], the slanted-edge method is 

faster, more convenient, better for mapping results over the entire image, and better for calculating the 

total information capacity. For reliable measurements, Siemens stars should be well-centered, especially 

if there is significant optical distortion. Siemens stars are better for quantifying the effects of 

demosaicing methods, image compression, and image saturation. 

The diagram below contains a summary of the two slanted-edge methods, illustrating the rich 

interconnections between the new KPIs. For the most part, the Imatest user does not need to be 

concerned about which of the two methods is used. 

 

As of May, 2023, there is still much work to be done. 

▪ Work with partners in industry and academia to correlate information capacity C with 
performance of Machine Vision and Artificial Intelligence systems (accuracy, speed, and power 
consumption). 

▪ Add camera information capacity in several standards, especially ISO TC42.  

▪ Search for metrics that can be used to predict the effects of image processing (sharpening, noise 
reduction) on MV/AI performance.  

▪ Find better ways of modeling High Dynamic Range (HDR) sensors, where noise is not a simple 
monotonic function of signal. 
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Appendix I. Information theory background 
Because concepts of information theory are unfamiliar to most imaging engineers, we present a brief 
introduction. To learn more, we recommend a text such as “Information Theory— A Tutorial 
Introduction” by James V Stone, available on Amazon. Shannon’s 1948 and 1949 papers [1],[2] are 
highly readable. 

http://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
http://fab.cba.mit.edu/classes/S62.12/docs/Shannon_noise.pdf
https://library.imaging.org/ei/articles/32/9/art00030
https://www.imatest.com/wp-content/uploads/2020/03/Information_capacity_white_paper.pdf
https://www.iso.org/standard/71696.html
https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-213
https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-213
https://doi.org/10.3390/cryst8120459
https://doi.org/10.3390/cryst8120459
https://doi.org/10.3390/cryst8120459
https://doi.org/10.1155/2014/634856
https://www.spiedigitallibrary.org/ebooks/TT/Modeling-the-Imaging-Chain-of-Digital-Cameras/eISBN-9780819483362/10.1117/3.868276?SSO=1
https://library.imaging.org/ei/articles/32/9/art00014
https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
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https://www.imatest.com/wp-content/uploads/2022/12/Rodney-Shaw_Fourier_Information_full.pdf
https://www.researchgate.net/publication/325622173
https://library.imaging.org/ei/articles/33/9/art00010
https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-027
https://doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-027
https://aapm.onlinelibrary.wiley.com/doi/10.1118/1.4730287
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
https://www.amazon.com/Information-Theory-Introduction-James-Stone/dp/0956372856
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What is information? 

Information is a measure of surprise or the resolution of uncertainty. The classic example is a coin flip. 
For a “fair” coin, which has a probability of 0.5 for either a head or tail outcome (which we can 
designate 1 or 0), the result of such a flip contains one bit of information. Note that two coin flips have 
four possible outcomes (00, 01, 10,11); three coin flips have eight possible outcomes, etc. The number 

of information bits is log2(the number of outcomes), which is the number of flips.  

Now, suppose you have a weirdly warped coin that has a probability of 0.99 for a head (1) and 0.01 for 
a tail (0). Little information is gained from the results of a flip. The equation for the information in a 
trial with m outcomes, where 𝑝(𝑥𝑖) is the probability of outcome i and ∑ 𝑝(𝑥𝑖) = 1𝑚

𝑖=1 , is 

𝐻 = ∑ 𝑝(𝑥𝑖) log2

1

𝑝(𝑥𝑖)

𝑚

𝑖−1

 

H is called “entropy”, and is often used interchangeably with “information”. It has units of bits (binary 
digits). Note that this definition is subtly different from the physical memory element called a “bit.” 

For the fair coin, where p(x1) = p(x2) = 0.5, H = 1 bit. But for the warped coin, where p(x1) = 0.99 and 
p(x2) = 0.01, H = 0.0808 bits. If the results of the warped coin toss were transmitted without coding, 
each channel bit would contain 0.0808 information bits. That would be extremely inefficient.  

Claude Shannon was one of the genuine geniuses of the twentieth 
century— renowned among electronics engineers, but little known to 
the general public. The medium.com article, 11 Life Lessons From 
History’s Most Underrated Genius, is a great read. (Perhaps Shannon is 
considered “underrated” because history’s most famous genius lived in 
the same town.) There are also nice articles in The New Yorker 
and Scientific American. And IEEE has an article connecting Shannon 
with the development of Machine Learning and AI. The 29-minute 
video “Claude Shannon – Father of the Information Age” is of particular 
interest to the author of this report because it was produced by 
the UCSD Center for Memory and Recording Research, which he visited 
frequently in his previous career.  

Channel capacity 

Shannon and his colleagues developed two theorems that form the basis 
of information theory. 

The first, Shannon’s source coding theorem, states that for any message there exists an encoding of 
symbols such that each channel input of D binary digits can convey, on average, close to D bits of 
information. For the above example, it implies that a code can be devised that can convey close to 1 
information bit for each channel bit—a huge improvement over the uncoded value of 0.0808. 

The second, known as the Shannon-Hartley theorem, states that the channel capacity, C, i.e., the 
theoretical upper bound on the information rate of data that can be communicated at an arbitrarily 
low error rate through an analog communication channel with bandwidth W, average received signal 
power, S, and additive Gaussian noise power, N, is 

𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = ∫ log2 (1 +

𝑆(𝑓)

𝑁(𝑓)
) 𝑑𝑓 

𝑊

0

 

Claude Shannon 

https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://medium.com/the-mission/10-000-hours-with-claude-shannon-12-lessons-on-life-and-learning-from-a-genius-e8b9297bee8f
https://www.newyorker.com/tech/annals-of-technology/claude-shannon-the-father-of-the-information-age-turns-1100100
https://blogs.scientificamerican.com/cross-check/profile-of-claude-shannon-inventor-of-information-theory/
https://spectrum.ieee.org/claude-shannon-information-theory
https://spectrum.ieee.org/claude-shannon-information-theory
https://www.youtube.com/watch?v=z2Whj_nL-x8
https://cmrr.ucsd.edu/
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Information_rate
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
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This equation is challenging to use because bandwidth W is not well-defined, noise is not white, and it 
applies to one-dimensional systems, whereas imaging systems have two dimensions, at least for 
Siemens stars. Slanted-edge analysis is one-dimensional. We have developed methods for calculating 
C for both the Siemens star and slanted edge test patterns.  

At this point we can hazard a guess as to why camera information capacity has been ignored for 
cameras. For most of its history the hot topic in information theory was the development of efficient 
codes, which didn’t approach the Shannon limit until the 1990s—nearly fifty years after Shannon’s 
original publication. But channel coding is not a part of image capture (though coding is important for 
image and video compression). Also, camera information capacity was not critically important when 
the primary consumers of digital images were humans (though it is related to perceived image quality), 
but that is changing rapidly with the development of new AI and machine vision systems. And finally, 
convenient methods of measuring it didn’t exist. (Rodney Shaw’s heroic efforts with film in the early 
1960s are very impressive [11].) 

 

Appendix 2. Binning noise 
This “green for geeks” box can be skipped by most readers. 

Binning noise, which has identical statistics to quantization noise, is a recently-discovered artifact of the ISO 
12233 binning algorithm. It is largest near the image transition — where the Line Spread Function  
𝐿𝑆𝐹(𝑥) = 𝑑𝜇𝑠(𝑥) 𝑑𝑥⁄  is maximum, and it can affect information capacity measurements. It appears because the 
individual scan lines are added to one of four bins, based on a polynomial fit to the center locations of the scan 
lines, which is a continuous function.  

Assume that n identical signals μs(x) are binned over an interval {-Δ/2, Δ/2}, where Δ = 1 in the 4× oversampled 
output of the binning algorithm (noting that Δ = (original pixel spacing)/4). If there were no binning noise, we 
would expect the binning noise power σBnoise2 to be zero. However, the values of μs(xk) are summed at uniformly-
distributed locations xk over the interval Δ, so they take on values  

𝜇𝑘 = 𝜇𝑠(𝑥𝑘) = 𝜇𝑠(𝑥0 + 𝛿) = 𝜇𝑠(𝑥0) + 𝛿
𝑑𝜇(𝑥)

𝑑𝑥
= 𝜇𝑠(𝑥0) + 𝛿 𝐿𝑆𝐹(𝑥) 

for Line Spread Function LSF. Noting that δ is uniformly distributed over {-1/2, 1/2} we apply the equation for 
the variance of a uniform distribution (similar to  quantization noise) to get 

𝜎𝐵𝑛𝑜𝑖𝑠𝑒
2 (𝑥) = 𝐿𝑆𝐹2(𝑥)𝜎𝑈𝑛𝑖𝑓𝑜𝑟𝑚

2 = 𝐿𝑆𝐹2(𝑥)/12    or    𝜎𝐵𝑛𝑜𝑖𝑠𝑒 = 𝐿𝑆𝐹(𝑥)/√12. 

Although this equation involves some approximations, we have had good success calculating the corrected noise, 

𝜎𝑠
2(corrected) =  𝜎𝑠

2 − 𝜎𝐵𝑛𝑜𝑖𝑠𝑒
2 . Binning noise has no effect on conventional MTF calculations. 

   

Edge noise for a Micro Four-Thirds digital camera, ISO 100, Y (Luminance) channel 
from raw image converted to TIFF with minimal processing. 

Left: with binning noise                                                 Right: binning noise removed 

https://classes.engineering.wustl.edu/ese488/Lectures/Lecture5a_QNoise.pdf
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://classes.engineering.wustl.edu/ese488/Lectures/Lecture5a_QNoise.pdf
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Binning noise also affects JPEG files with bilateral filtering (nonuniform sharpening). Removing it improves the 
robustness of Edge Variance calculations. 

At the time of the 23.1 release (May 2023), the Slanted edge calculation setting, on the lower-left of the More 
settings window, must be set to Imatest 22.1 (recommended).  

 

 


