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Abstract 

We present a comprehensive framework for conveniently measu-

ring camera information capacity and related performance metrics 

from the widely used slanted-edge (e-SFR) test pattern.  

The goal of this work is to develop a set of image quality metrics 

that can predict the performance of Machine Vision (MV) and 

Artificial Intelligence (AI) systems, assist with camera selection, 

and use for designing electronic filters to optimize system perfor-

mance. The new methods go far beyond the standard approach of 

estimating system performance based on sharpness and noise (or 

Signal-to-Noise Ratio) — which often involves more art than 

science. 

Metrics include Noise Power Spectrum (NPS), Noise Equivalent 

Quanta (NEQ), and two metrics that quantify the detectability of 

objects and edges: Ideal Observer Signal-to-Noise Ratio, SNRi, 

and Edge Location standard deviation (Edge σ). We show how to 

use these metrics to design electronic filters that optimize object 

and edge detection performance. 

The new measurements can be used to solve several problems, 

including finding a camera that meets performance requirements 

with a minimum number of pixels— important because fewer pixels 

mean faster processing and lower energy consumption as well as 

lower cost. 

Introduction 
We introduce the concept of information capacity, 

which is calculated from signal power, noise power, and 
bandwidth. We describe how noise power (and hence 
information capacity) is calculated in two steps using the 
familiar slanted-edge (e-SFR) test pattern, specified by 
the ISO 12233:2014/2017/2023 standard [1]. 
 
1. The edge variance calculation of spatially dependent noise 

power, N(x) = σs
2(x), allows uniform image processing to 

be distinguished from nonuniform processing. It can be 
used to obtain a reasonable approximation to the informa-
tion capacity of bilinear (nonuniformly) filtered images, 
found in JPEG image files from most consumer cameras.  

2. A noise image, obtained by inverse binning, is used to 
calculate the noise power spectrum, NPS(f), which fully 

characterizes the noise, but is only valid for uniformly 

processed images. It enables a more accurate calculation 
of information capacity as well as several additional 
metrics, including Noise Equivalent Quanta, NEQ, and 
metrics for object and edge detection, SNRi, and Edge σ. 
 

We describe how to use these metrics to design 
electronic filters, called matched filters, for optimizing 
object and edge detection performance. 

Information capacity 
Camera information capacity, based on Claude 

Shannon’s ground-breaking work on information theory 
[2-3] has long held promise as a figure of merit for a 
variety of imaging systems. It has been discussed in 
several technical papers [4-7] and in two textbooks [8-
9], but it has failed to gain widespread adoption in the 
imaging industry, primarily because it was difficult to 
measure 

In electronic communications systems, channel 
(information) capacity, C, defines the maximum rate in 
bits per second that information can be transmitted 
through a channel without error. For additive white 
gaussian noise, C is given by the deceptively simple 
Shannon-Hartley equation. 

𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = ∫ log2 (1 +

𝑆(𝑓)

𝑁(𝑓)
)

𝑊

0

        (1) 

It is quite logical to apply this definition to imaging 
systems, where C has units of bits/pixel. Signal power, 
S(f), and noise power, N(f), must be measured with care, 
which was traditionally difficult and error-prone be-
cause S(f) and N(f) had to be measured at separate loca-
tions. To make matters worse, most JPEG images from 
consumer cameras usually have nonuniform image pro-
cessing (bilateral filtering) [10] that sharpens images 
near contrasty features such as edges (boosting high 
frequencies) but reduces noise elsewhere (lowpass 
filtering). This can increase the measured information 
capacity while removing information. We can resolve 

Revised August 30, 2024 — Not the published paper 
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this problem by calculating noise power N at the edge, 
where MTF (sharpness) is measured. 

Because nonuniform image processing is commonly 
applied, it is desirable to measure signal and noise at the 
same location in the image, i.e., to measure noise in the 
presence of signal. This is also convenient and reduces 
chances of errors in scaling. 

The slanted-edge measurement 
For context, we briefly review the slanted-edge 

algorithm.  
1. The image should be well-exposed, 

avoiding the dark “toe” and light 

“shoulder” response regions. 

2. Linearize the image by applying the 

inverse of the encoding gamma curve.  

3. Find the center of the transition 

between the light and dark regions for 

each horizontal scan line, yl (x).  
4. Fit a polynomial curve to the center 

locations.  

5. Add each appropriately shifted scan 

line to one of four bins, depending on the location of the 

curve relative to the scan line. 

6. Combine the mean signal in each bin to obtain the 4× over-

sampled averaged edge for L scan lines, μs(x), illustrated in 

the upper plot of Figure 7. 

𝜇𝑠(x) =  
1

𝐿
∑ 𝑦𝑙(𝑥 − 𝛿)                   (2)

𝐿−1

𝑙=0
 

7. Calculate Spatial Frequency Response, SFR(f) (synony-

mous with MTF(f)), by differentiating the averaged edge, 

windowing it, then taking the magnitude of the Fourier trans-

form, normalized to 1 (100%) at zero frequency, illustrated in 

Figure 1. 

 
Nomenclature— Spatial Frequency Response (SFR) 

and Modulation Transfer Function (MTF) are often used 
synonymously, but SFR is generally preferred in recent 
literature [1]. We use SFR here, although some plots are 
labeled MTF (which is more familiar) and we keep sum-
mary metrics such as MTF50, the spatial frequency 
where SFR drops to 50% of its zero-frequency value. 

Modified ISO 12233 slanted-edge (e-SFR) 
calculation with interpolated binning 

The slanted edge is one of several patterns for calcu-
lating SFR. The Siemens star produces good results, and 
is useful for evaluating the effects of demosaicing and 
image compression, but requires far more space and 
computation time than slanted edges, which are small 
and fast, but often have somewhat rough response and 
artifacts at high frequencies (>0.3 C/P). This can make it 
difficult to measure MTF10— the spatial frequency 
where SFR drops to 10% of its zero-frequency value, 
roughly equivalent to the Rayleigh diffraction limit. 
Figure 1 shows an example for a 12-megapixel camera 
with a 1-inch sensor at ISO 1600. 

 

 

Figure 1. SFR (MTF) for 1 inch sensor camera at ISO 1600:  
Current ISO 12233 binning algorithm (uninterpolated). 

The anomalous response at f > 0.5 C/P has little 
effect on common SFR summary metrics such as MTF50, 
which is why it has been mostly, though not entirely, 
ignored. But we were concerned about how it might 
affect the consistency of metrics such as NEQ, that 
depend on 𝐾(𝑓) = 𝑆𝐹𝑅(𝑓)2/𝑁𝑃𝑆(𝑓), even though they 
are calculated for f ≤ fNyq (0.5 Cycles/Pixel). 

 

 

Figure 2. Interpolation diagram: N to 2N-1 pixel count 

We explored a modification of the ISO 12233 algo-
rithm that uses interpolated data. Its algorithm is simple. 
Before performing the binning, interpolate the N pixels 
of each scan line to obtain 2N-1 pixels. In MATLAB, this 
can be easily done with the interp2 function. ‘cubic’ 
interpolation gives good results, but not very different 
from ‘linear,’ which is faster. The polynomial fit equation 
and frequency scale are adjusted accordingly. The result 
is an SFR curve that has reduced artifacts and SFR above 
the Nyquist frequency, shown in Figure 3. 

 

Figure 3. SFR (MTF) for 1 inch sensor camera at ISO 1600:  
New interpolated binning algorithm. 
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Interpolated binning reduces high frequency artifacts 
in SFR curves [11], ranging from sharp images (with 
significant energy above 𝑓𝑁𝑦𝑞/2 = 0.25 𝐶/𝑃), to motion-

blurred images that suffered from sawtooth Line Spread 
Function artifacts. Slanted-edge results are much closer 
to Siemens star results for uniformly processed images, 
and it is now possible to reliably measure MTF10.  

However, we became concerned about the frequency 
response of the interpolation, which drops off as 
sinc2(fT) for sampling interval T, which would account 
for the cleaned-up high frequency response. For this 
reason, we did not use interpolated binning for most of 
the calculations in this document.  

The Edge Variance calculation for spatially 
dependent noise power, N(x) 

We concisely review the Edge Variance calculation, 
which was introduced in an earlier paper [13]. 

 A simple addition to the ISO 12233 binning algo-
rithm described above allows the variance of the signal, 
σs2(x)= N(x) (the noise power), to be calculated in 

addition to the mean, μs(x).  
In addition to ∑ 𝑦𝑙(𝑥), calculate the sum of the 

squares of each scan line, ∑ 𝑦𝑙
2(𝑥). Then, the noise power 

is 

𝑁(𝑥) = 𝜎𝑠
2(x) =

1

𝐿
∑ (𝑦𝑙(𝑥) − 𝜇𝑠(𝑥))2

𝐿−1

𝑙=0

=  
1

𝐿
∑ 𝑦𝑙

2(x) − (
1

𝐿
∑ 𝑦𝑙(x)

𝐿−1

𝑙=0
)

2𝐿−1

𝑙=0
 

 (3) 

𝜎𝑠(𝑥) = √𝑁(𝑥) is the noise amplitude. This equation 

holds for the entire oversampled array— including at 
the edge transition, where noise was traditionally diffi-
cult to measure.  

[13] describes a form of quantization noise called 
binning noise that is largest near the image transition— 
where the Line Spread Function,  𝐿𝑆𝐹(𝑥) = 𝑑𝜇𝑠(𝑥) 𝑑𝑥⁄  is 
maximum. It is subtracted from σs

2(x) to obtain a minor 
improvement in calculation accuracy. 

Signal power, S  
The peak-to-peak signal amplitude, VP-P, (Figure 4) at 

low spatial frequencies is the measured difference 
between the means of the light and dark regions of the 
linearized slanted edge, μs(x). 

𝑉𝑝−𝑝 = ∆𝜇𝑠 = 𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘 = 𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛        (4) 

 

Figure 4. Slanted-edge amplitudes (voltages, V) 

Since our intent is to calculate the information (or 
channel) capacity, which is the maximum information 
for the VP-P signal, we assume a uniform signal distribu-
tion that maximizes the information capacity. Its vari-
ance, which is the average signal power at low spatial 
frequencies, is 

𝜎𝑉
2 = 𝑆𝑎𝑣𝑔(0) = (𝜇

𝑠𝐿𝑖𝑔ℎ𝑡
− 𝜇

𝑠𝐷𝑎𝑟𝑘
)2/12 = 𝑉𝑝−𝑝

2 /12  

 (5) 
The Shannon-Hartley equation uses the average 

frequency-dependent signal power, Savg(f).  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝 𝑆𝐹𝑅(𝑓))
2

12⁄                   (6) 

Signal power, S, is proportional to the square of the 
chart’s Michelson contrast, 
𝐶𝑀𝑖𝑐ℎ =  (𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘) (𝜇𝑠𝐿𝑖𝑔ℎ𝑡 + 𝜇𝑠𝐷𝑎𝑟𝑘)⁄ , for a pro-

perly linearized image, which is easy to obtain if the 
image does not approach saturation at low or high pixel 
levels. Note that Smax ≤ 1 for linearized images norma-
lized to 1. (Some cameras restrict Smax to values < 1) 

Noise power, N 
Noise power, N, has the same units as signal power, S; 

hence S/N is dimensionless. 
Depending on how the image has been processed, 

system performance may be dominated by the mean of 
the noise power, mean(N(x)) or by the noise power in 
the vicinity of the edge transition region, which is 
defined by the Line Spread Function, 𝐿𝑆𝐹(𝑥) =
𝑑𝜇𝑠(𝑥)/𝑑𝑥, shown in Figure 5.  

For an LSF peak located at XLSF, the edge transition 
region is defined by XLSF – PW20 < x < XLSF + PW20, where 
PW20 is the length of the region where 𝐿𝑆𝐹(𝑥) =
𝑑𝜇𝑠(𝑥) 𝑑𝑥⁄ ≥  0.20 𝐿𝑆𝐹𝑚𝑎𝑥 . 

 

https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem#Statement_of_the_theorem
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Figure 5. Line Spread Function, LSF = dμs(x)/dx for the strongly 
sharpened bilateral-filtered image in the example below. 

Two image processing types cover most cases of 
interest. A third type is extremely rare. 

 
1. Minimally and uniformly -processed (but not 

strongly sharpened) images, typically TIFFs converted 
from raw files (raw→TIFF). Most cameras to be evalu-
ated for Machine Vision/Artificial Intelligence are in this 
category. Minimally processed images can be identified 
by the lack of a strong noise peak near the transition. 

 

 

Figure 6. Noise amplitude σs(x) for uniformly processed image (TIFF from 
raw; no sharpening or noise reduction). ISO 100. The bold black curve is the 
Y-channel, smoothed with a 1.25-pixel kernel before 4× oversampling. 

Since noise amplitude, √𝑁(𝑥), can be quite rough 

(Figure 6), the mean of the entire acquired edge is 
recommended for calculating N for the Shannon-Hartley 
equation.  

𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = mean(𝜎𝑠
2(𝑥))                           (7) 

2. Bilateral-filtered images [10] include nearly all 
JPEG images from consumer cameras. Bilateral filters 
sharpen images near contrasty features such as edges, 
but blur (lowpass-filter) them to reduce noise else-
where. This causes a distinct noise peak, shown in Figure 
7, close to the edge transition, which can dominate ca-
mera performance because SFR is also measured at the 
transition. The noise-reduced (lowpass-filtered) region 

should not be used for calculating NPS(f) or information 
metrics. We have long known about the noise peak, but 
there was previously no convenient way to observe it. 

 

 

Figure 7. Noise amplitude σs(x) for bilateral-filtered image (sharpened near 
edges; noise-reduced elsewhere) from a camera JPEG. ISO 100.. 

For bilateral-filtered images, use Noise power, Npeak, 
the square of the peak noise amplitude, smoothed with a 
rectangular kernel of length PW20/2. This is an arbitrary 
choice, but it removes most of the jaggedness and produ-
ces reasonably consistent results.  

3. A very few strongly but uniformly-sharpened 
images may have strong noise peaks caused by defects 
such as dust specks. These defects have little effect on 
standard SFR measurements. In the rare event that this 
occurs, noise Nuniform-sh can be calculated from 

mean(𝜎𝑠
2(𝑥)) excluding the edge transition region, XLSF – 

PW20 < x < XLSF + PW20. 
 
The selection of noise (Nuniform , Npeak, or Nuniform-sh) to 

enter into the Shannon-Hartley equation is based the 
presence of a detected peak near the transition. Some 
additional considerations: 
• Noise is close enough to white to yield good results. 

This assumption is supported by experimental 
results in [22]. The Noise Image calculation, below, 
which uses the noise power spectrum, NPS(f), is 
more accurate, but only applies to minimally/uni-
formly-processed images. 

• Noise power is larger on the lighter side of the edge 
due to photon shot noise, which increases with the 
number of photons reaching the sensor pixels (for 
linear— but not HDR— sensors). The mean, Nuniform, 
includes both sides.  

• For linear sensors, noise power increases with 
exposure, following the function 𝑁(𝑉) = 𝑘0 + 𝑘1𝑉, 
where k1 is the coefficient for photon shot noise, 
derived in [13].  

• Because Npeak is measured at the same location as 
the signal used to measure SFR, it provides a 
reasonable approximation to the information 
capacity for bilateral-filtered images, which 
includes almost all JPEGs from cameras. It can be 

https://en.wikipedia.org/wiki/Bilateral_filter
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useful for estimating the performance of “black 
box” cameras, which have unknown image 
processing. 

Bandwidth, W  
Bandwidth, W, is always 0.5 cycles/pixel (the Nyquist 

frequency, fNyq). Signals above Nyquist do not contribute 
to the information content; they can reduce it by causing 
aliasing— spurious low frequency signals like Moiré that 
can interfere with the actual image. Frequency depen-
dence comes from SFR(f), which is a component of 
Savg(f). 

Combining S, N, and W to obtain information 
capacity, C 

Once signal power, S, and selected noise power, N 
(Nuniform, Nuniform-sh, or Npeak, as appropriate), have been 
obtained, information capacity for the Edge Variance 
method, CEV, can be calculated. 

         𝐶𝐸𝑉 = ∫ log2 (1 +
𝑆𝑎𝑣𝑔(𝑓)

𝑁
)

0.5

0

𝑑𝑓   

≅ ∑ log2 (1 +
𝑆𝑎𝑣𝑔(𝑖∆𝑓)

𝑁
) ∆𝑓                   (8)

0.5/∆𝑓

𝑖=0

 

Edge Variance results: Edge, SFR, C 
Figure 8 shows the Edge and SFR response as well as 

calculated information capacity values (C4 and Cmax, to be 
introduced below).  

 

  

Figure 8. Edge and SFR (MTF) plot for compact digital camera for an 
unsharpened TIFF from raw. Upper: Mean edge μs(x). Lower: SFR(f). 
C4 is the information capacity for a 4:1 contrast ratio edge. 

SFR(f), which is sometimes confused with bandwidth, 
can take a large bite out of C, especially since it is 
squared in the equation for signal power, Savg(f). [13] 
contains an explanation of how increasing SFR can lead 
to significant aliasing-related artifacts, such as Moiré, 
that degrade performance. 

Measurement technique 
Test chart edge contrast should be between 2:1 and 

10:1, with 4:1 (specified in the ISO 12233 e-SFR stan-
dard) strongly recommended. Edge contrast greater 
than 10:1 increases the likelihood of nonlinearities 
(saturation or clipping) that will compromise the 
results.  

Images should be well-exposed because saturation or 
clipping can cause misleading results. It may be of inte-
rest, however, to measure C as a function of exposure, 
especially for dim light. 

The camera should be well-focused. Sturdy camera 
support should be employed. 

Although results are relatively insensitive to ROI 
selection, some care must be taken to obtain good con-
sistency. ROIs should be reasonably large; at least 30x60 
pixels is recommended. If possible, the edge should be 
centered in the selected region, and there should a 
reasonable amount of “breathing room” on the sides.  

Additional assumptions 
A key assumption is that the camera’s dynamic range 

(the range of tones that can be reproduced with good 
contrast and Signal-to-Noise Ratio (SNR)) is sufficient 
for the intended task. Most modern image sensors have 
dynamic ranges greater than 60dB (1000:1); high dyna-
mic range (HDR) sensors have 120 dB or more. The 
majority of scenes in pictorial, medical, or robotic (but 
not automotive) imaging have tonal ranges under 60 dB. 
Lens flare (stray light) typically limits practical camera 
dynamic range to under 100 dB, which can impact auto-
motive night driving by fogging important dark to mid-
dle tones. If there are concerns about dynamic range, we 
strongly recommend measuring it with a transmissive 
grayscale chart.  

Other assumptions: sensor nonuniformities (fixed-
pattern noise, also called PRNU (Photo Response Non-
uniformity) are included in noise measurements. Tonal 
response is well-behaved (typically following a gamma 
curve, except for the extreme highlights and shadows). 
Stray (flare) light is not too severe where SFR is 
measured. 

Because the measured value of C is closely tied to the 
n:1 chart contrast ratio, where n ≤ 10 to minimize satura-
tion or clipping, n should be specified when C is repor-
ted, e.g., C4 for charts with a 4:1 contrast ratio.  

https://www.imatest.com/solutions/dynamic-range/#sensordr
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Sensitivity to exposure 
Because both noise power, N, and amplitude range, 

ΔV, increase with exposure, C4 is a strong function of 
exposure, as illustrated in Figure 9. This makes it useful 
for measuring low light performance.  

Consistent exposure can be difficult to achieve with 
autoexposure consumer cameras because their JPEG 
output files often have “shoulders” in their tonal res-
ponse (regions of reduced highlight contrast intended to 
improve pictorial quality by minimizing saturated 
(“burnt out”) highlights).  

Implementing a shoulder requires extra headroom, 
i.e., a degree of underexposure, which can vary for diffe-
rent camera models. Since autoexposure is optimized for 
JPEG output, minimally processed files, typically TIFFs 
converted from raw with simple gamma curves 
(raw→TIFF), often appear to be underexposed.  

Maximum information capacity Cmax ― a more 
stable metric than C4 

In addition to using C4 to measure information capa-
city as a function of exposure (Figure 9), we are also 
interested in measuring the maximum information capa-
city, Cmax. We expect Cmax to be nearly independent of 
exposure. It is obtained in two steps. 

Step1:  Replace the measured peak-to-peak ampli-
tude range, VP-P, with the maximum allowable value,  
𝑉𝑃−𝑃_𝑚𝑎𝑥 = 1 (for systems normalized to a maximum 
amplitude of 1). This may seem like a simplification, but 
it works well for most cameras. Referring to the section 
on Noise Power, N,  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝_𝑚𝑎𝑥  𝑆𝐹𝑅(𝑓))
2

12⁄ = 𝑆𝐹𝑅(𝑓)2/12 

 (9) 
Step 2:  Replace the measured noise power, N, with 

Nmean, the mean of N over the range 0 ≤ V ≤ 1 (where 1 is 
the maximum allowable normalized signal amplitude V). 
The general equation for N for linear image sensors is 

                     𝑁(𝑉) = 𝑘0 + 𝑘1𝑉  (10) 
Equations for k0 and k1 and an adjustment to Cmax for 

bilateral-filtered images (which are less accurate than 
for minimally processed images) are derived in [13]. 

Cmax (Figure 9) is nearly independent of exposure for 
minimally or uniformly-processed images with linear 
sensors, where noise power, N, is a known function of 
signal amplitude, V, but is only approximately indepen-
dent for imaging systems with bilateral filtering or HDR 
(nonlinear) sensors, where noise power N is not a 
simple function of V. 
 

 

Figure 9. C4 and Cmax for minimally processed raw→TIFF and JPEG 
images for a 10 MP compact camera. 
Cmax is consistent for the raw→TIFF image. C4 is useful for quantifying 
low light performance. 

High Dynamic Range (HDR) images 

Special care must be taken when calculating Cmax for 
HDR sensors, which have several cycles of SNR and noise 
as exposure increases [14]. 

 

 

Figure 10. Cyclic response of Signal-to-Noise Ratio for HDR sensor 

Noise N(V) increases monotonically in dark regions, 
but jumps at the discontinuities of the SNR plot (Figure 
10), around Log10(DN) = 3.6 and 4.8. The noise measure-
ment depends on the location on the sawtooth curve 
where the measurement is made. Because each HDR 
sensor is different, there is no simple equation, compa-
rable to (10) for calculating Cmax. It will require a sepa-
rate measurement and an assumption about the maxi-
mum SNR, perhaps limiting it to the mean value in the 
sawtooth region (above Log10(DN) = 3 in Figure 10). For 
now, we recommend caution when calculating Cmax for 
HDR sensors. Measurements of C4 as a function of 
exposure are of intest for HDR sensors.  
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Information capacity results 
Table 1 shows three cameras with both raw and JPEG 

output that we tested for information capacity as a 
function of Exposure Index (ISO speed setting).  

Table 1. Cameras used in the tests 

1. Panasonic 
Lumix LX5 

2.14 µm pixel pitch. Compact 10.1-
megapixel camera with a Leica f/2 zoom 

lens set to f/4. 

2. Sony 
A6000 

3.88 µm pixel pitch. 24-megapixel micro 
four-thirds camera 

3. Sony A7Rii 4.5 µm pixel pitch. A 42-megapixel full-
frame camera with a Backside-Illuminated 

(BSI) sensor 

 
The image in Figure 11, which was analyzed in [15], 

contains a 50:1 contrast Siemens star and four 4:1 con-
trast slanted edges. We used the upper-left slanted edge 
for most tests. The average background of the chart is 
close to neutral gray (18% reflectance) to ensure a good 
exposure. 

 

 

Figure 11. Typical image (cropped) including Siemens star and slanted-
edges to the left and right of the star. 

We captured both JPEG and raw images, converted by 
LibRaw to 24-bit sRGB TIFF (designated as raw→TIFF) 
with minimal processing (no sharpening, no noise 
reduction, and simple gamma-encoding). The luminance 
channel (Y = 0.2125×R + 0.7154×G + 0.0721×B) was 
analyzed. Results were similar for 48-bit Adobe RGB 
conversion. 

Figure 12 shows C4 as a function of ISO speed (Expo-
sure Index, which is proportional to analog gain) for 
raw→TIFF images (solid lines) and JPEG images (dotted 
lines). For the raw→TIFF images, the relationship 
between ISO speed and C is similar for all three cameras.  

Note that increasing the Exposure Index decreases 
the exposure (the total light reaching the image sensor). 

Nuniform was used for the raw→TIFF images; Npeak was 
used for the bilateral-filtered JPEGs.  

 

Figure 12. Information capacity, C4, from 4:1 slanted-edge images. 
Solid lines for raw→TIFF images; Dotted lines for JPEGs. 
Note that increasing the Exposure Index decreases the exposure 
(total light reaching the image sensor). 

Cmax has a similar trend to C4, but is higher about 1.6. 
[13] contains more detail on its behavior. 

Color channels 

The separate R, G, and B channels tend to have 
slightly lower C4 than the Y-channel because the noise in 
the separate channels is uncorrelated. Color is discussed 
in more detail in [13]. 

Although this paper has focused on demosaiced 
images, the slanted-edge method can also be applied to 
raw (undemosaiced) images.  

Effects of sharpening 
  

  

Figure 13. Edge/SFR (MTF) plots derived from the same image as 

Figure 8, where C4 = 2.03 b/p and Cmax = 3.82 b/p, raw→TIFF, ISO 100 

Sharpening Radius = 2; Amount = 2. C4 = 2.02 b/p; Cmax = 3.82 b/p. 
(The exact agreement is a coincidence: they’re typically very close.) 
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The examples in Figures 8 and 13 (and many others 
we ran) show that sharpening (and more generally, 
reversable image processing) has little effect on slanted-
edge information capacity, as expected. The image used 
for Figure 13 (initially a minimally-processed TIFF) has 
been strongly Unsharp Mask (USM) sharpened with 
Radius = 2 and Amount = 2 (R2A3). It can be compared 
to Figure 8, where C4 = 2.03 and Cmax = 3.82 b/p. We 
observed a similar insensitivity of C to sharpening with 
Siemens stars [15]. 

One of our original goals in developing the informa-
tion capacity measurements was to be able to measure 
camera quality independently of sharpening and image 
processing, which strongly varies from camera to came-
ra. The information capacities for the in-camera JPEG 
version of the image in Figures 8 and 13, which is 
strongly sharpened (with peak MTF  ≅ 1.5) is C4 = 1.91 
and Cmax = 3.61 b/p, which is reasonably close.  

Total information capacity 
The total information capacity, Ctotal, for the entire 

image is calculated from  

𝐶𝑡𝑜𝑡𝑎𝑙 = mean(𝐶)  ×  megapixels               (11) 

From Figure 14, the mean value of Cmax is 2.847 
bits/pixel. Since this camera has 16 Megapixels, the total 
capacity, CmaxTotal, for the Luminance (Y) channel = 45.55 
MB.  

 

 

Figure 14.   3D contour eSFR ISO plot of Cmax for the Luminance (Y) 
channel, ISO 100 

Summary of the Edge variance calculation 
The edge variance calculation of the spatially depen-

dent noise power, N(x), does not fully characterize the 
noise. It is, however, good enough for a reasonable 
approximation to information capacity C that works with 
nonuniform as well as uniform image processing. The 
mean (or peak value) of the noise is substituted into the 

Shannon-Hartley equation to calculate information 
capacity, Cn (measured directly from an n:1 contrast 
chart) or Cmax (the maximum information capacity, 
which is independent of exposure and chart contrast).  

The Noise Image calculation of the Noise Power Spec-
trum, NPS(f), described below, is required to derive key 
metrics for edge and object detection. But NPS(f) cannot 
be reliably measured for most nonuniformly processed 
(especially bilateral filtered) images, where the noise is 
lowpass filtered in regions not immediately adjacent to 
the edge, which is where SFR is measured.   

The noise spectrum, NPS(f), must be normalized 
using the edge variance noise, N(x). 

The Noise Image Calculation  
The second, and more accurate, noise calculation uses 

an image of the noise to calculate the Noise Power 
Spectrum, NPS(f)), enabling the calculation of the key 
information metrics. 

The method involves inverting the ISO 12233 binning 
procedure. Noting that the 4× oversampled edge was 
created by interleaving the contents of 4 bins, each of 
which contains an averaged (noise-reduced) signal de-
rived from the original image, we apply an inverse of the 
binning algorithm to set the contents of each scan line to 
its corresponding interleave (Inversely binned, below). 
Since the inverse-binned image is a nearly noiseless re-
plica of the original image, we can create a noise image 
by subtracting the inverse-binned image from the origi-
nal image (which must be corrected for illumination 
nonuniformity in the direction of the edge).  

The three images are shown in Figure 15. The other 
images are displayed with gamma-correction. 

 

     
Original image       Inverse-binned           Noise image 

(de-interleaved) 
Figure 15. Noise image method, for a noisy (high ISO speed) image 

Noise image =  
             Original image – Inverse-binned image  (12) 

 
The noise image, which has a mean of zero, is dis-

played with an offset, lightened, and boosted in contrast 
for visibility. 

These images allow several additional image quality 
parameters to be calculated, including Noise Power 
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(Wiener) Spectrum (NPS(f)) and Noise Equivalent Quanta 

(NEQ(f)), well-known in medical imaging systems, and 
described in an excellent review paper by Ian Cunningham 

and Rodney Shaw [16], and also in the obscure but valu-
able ICRU Report 54 [17]. (ICRU is the International 
Commission on Radiation Units & Measurements.) These 
measurements are little-known outside of medical ima-
ging, in part because they have been difficult to measure. 

One caution is in order: the Noise Image method is 
not valid for bilateral-filtered images and has limited 
value for images that have been noise-reduced.  

Noise Power Spectrum (NPS) 
NPS(f), also called the Wiener spectrum (Figure 16), is 

used in the calculation of the key information metrics. 
The Noise Amplitude (Voltage) Spectrum, 𝑁𝑉(𝑓) =

√𝑁𝑃𝑆(𝑓)  is also of interest.  

The 1D Noise Power or Voltage spectrum is derived 
from a 2D Fourier transform (FFT) of the noise image.  

 
• Noting that f = 0 at the center of the 2D FFT image 

(after applying the MATLAB fftshift function), divide 
the image into several annular regions, then find the 
average noise power, nps(i), for each region i. This 
procedure has been used for the Imatest Spilled 
Coins/Dead Leaves calculations since 2013, and has 
been tested thoroughly. 

• Because this procedure does not maintain the inva-
riance in energy between the spatial and frequency 
domains implied by Parseval’s theorem, NPS(f) is 
normalized so that the one-dimensional integrals in 
frequency and spatial domain are equal. 

∫ 𝑁𝑃𝑆(𝑓) 𝑑𝑓 = ∫ 𝜎𝑠
2(𝑥) 𝑑𝑥 = ∫ 𝑁(𝑥) 𝑑𝑥         (13) 

𝑁𝑃𝑆(𝑖) =
𝑛𝑝𝑠(𝑖) ∫ 𝑁(𝑥) 𝑑𝑥

∑ 𝑛𝑝𝑠(𝑖)
                     (13𝑎) 

Even though this paper focuses on metrics derived 
from the noise image method, the spatially dependent 
noise from the Edge variance method, 𝑁(𝑥) = 𝜎𝑠

2(𝑥), is 
useful for two purposes. 

• to indicate of the type of image processing, 
depending on the presence of a peak, 

• to normalize NPS(f), using Equation 13a, 
ensuring consistent scaling, even for small 
ROIs, where the de-binned image is not 
entirely noiseless.  

Demosaicing typically causes the Noise Power Spec-
trum, NPS(f), to drop to about half its low frequency 
value at the Nyquist frequency, fNyq = 0.5 C/P. 

 

 

Figure 16. Noise Power Spectrum (NPS(f)) 

NPS(f) is used to calculate most of the image infor-
mation metrics introduced in this paper— NEQ, CNEQ, 
SNRi, Edge Location σ, and matched filter transfer 
functions.  

It is a part of the kernel K(f) that appears in the equa-
tions for most of the metrics. 

𝐾(𝑓) = 𝑆𝐹𝑅2(𝑓)/𝑁𝑃𝑆(𝑓)                    (14) 

Equations will be written in both standard form and 
with K(f). Because uniform filtering affects SFR2(f) and 
NPS(f) identically, K(f) is not affected by uniform filte-
ring, such as sharpening or lowpass filtering.  

The spatial-domain correlate of frequency domain 
functions divided by NPS(f) are frequently described as 
“noise-whitened.”  

Noise autocorrelation, which is the inverse Fourier 
transform (IFT) of NPS(f), is potentially useful for evalu-
ating the crosstalk between image sensor pixels, but the 
Bayer Color Filter Array (CFA) makes such measure-
ments challenging. 

Noise Equivalent Quanta, NEQ 
NEQ(f) (Figure 17) is a frequency-dependent Signal-

to-Noise (power) Ratio, related to the number of quanta 
that would result in the measured SNR when photon 
shot noise is dominant. It was described in 1999 by Cun-
ningham and Shaw [16] and in 2016 by Keelan [18], and 
it is used in medical imaging [16, 17, 19]. 

𝑁𝐸𝑄(𝑓) =
𝜇2 𝑆𝐹𝑅2(𝑓)

𝑁𝑃𝑆(𝑓)
=  𝜇2 𝐾(𝑓)               (15) 

where the mean linear signal, μ, can be defined in 
either of two ways, depending on how NEQ is to be 
applied.  

 

https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://en.wikipedia.org/wiki/Parseval%27s_theorem
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Figure 17. Noise Equivalent Quanta (NEQ(f)) 

In the standard definition of NEQ, 𝜇2 = 𝑉𝑚𝑒𝑎𝑛
2  (Figure 

4). If NPS is dominated by photon shot noise, we can use 
the well-known property of the Poisson distribution, 
𝑆𝑁𝑅2 = 𝑞̅ (where 𝑞̅ is the mean count of the detected 
quanta.) to show that 𝑁𝐸𝑄(0) = 𝑞̅. For example, NEQ(0) 
= 200 corresponds to a mean of 𝑞̅ = 200 detected quanta 
per pixel. But because nonuniform illumination can 
increase NPS at the lowest spatial frequencies, causing 
NEQ to decrease, the maximum value of NEQ appears to 
be better for estimating 𝑞̅. 

The above equation can be used for calculating 
Detective Quantum Efficiency), 𝐷𝑄𝐸(𝑓) = 𝑁𝐸𝑄(𝑓)/𝑞̅𝑖 , 
where 𝑞̅𝑖  is the mean number of quanta incident on each 
pixel. This requires a separate (and exacting) measure-
ment of 𝑞̅𝑖 . The two levels of the slanted edge make DQE 
measurements particularly challenging.  

NEQ(f) is not affected by linear, uniform electronic 
filtering. 

Information capacity from NEQ, CNEQ 
NEQinfo(f) (a variant of NEQ), calculated from (15) 

using 𝜇 = 𝑉𝑃−𝑃/√12 (to be consistent with the Edge 
Variance calculation for uniformly distributed levels), is 
signal power divided by noise power. It can therefore be 
substituted into the Shannon-Hartley equation to 
calculate information capacity, CNEQ. 

𝐶𝑁𝐸𝑄 = ∫ log2 (1 + 𝑁𝐸𝑄𝑖𝑛𝑓𝑜(𝑓)) 𝑑𝑓
𝑊

0

=  ∫ log2(1 + 𝜇2 𝐾(𝑓)) 𝑑𝑓
0.5

0

     (16) 

where W = fNyq = 0.5 Cycles/Pixel. [Author’s note: I 
thought I discovered this connection, but I found it in 
papers on PET scanners and Digital Mammography 
by Christos Michail et. al. [20-21]— almost certainly 
unknown outside medical imaging.] 

The key results, C4NEQ and CmaxNEQ, are included in the 
Results summary (Figure 18). They are slightly different 
from the Edge Variance results, because NPS(f) is used. 

(The Edge Variance calculation assumes constant NPS, 
i.e., white noise.)  

 

 

Figure 18. Information capacity C from the two methods:  
Edge variance and Noise image. 

Ideal Observer SNR (SNRi) 
SNRi (Figure 20) is a measure of the detectability of 

objects. It was introduced and rigorously correlated with 
Bayesian detection statistics in the 1996 ICRU Report 54 
[17], then reintroduced to the imaging community Paul 
Kane [23] and Orit Skorka and Paul Kane [22]. The two-
dimensional equation in [22] gives the best results. 

     𝑆𝑁𝑅𝑖2 = ∬ (
|𝐺(𝜈𝑥, 𝜈𝑦)|

2
 𝑆𝐹𝑅2(𝜈𝑥, 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦)
) 𝑑𝜈𝑥  𝑑𝜈𝑦

=  ∬|𝐺(𝜈𝑥 , 𝜈𝑦)|
2

 𝐾(𝜈𝑥 , 𝜈𝑦) 𝑑𝜈𝑥  𝑑𝜈𝑦          (17) 

where 𝐺(𝜈𝑥 , 𝜈𝑦) is the two-dimensional Fourier 

transform of the rectangular object to be detected, g(x,y), 
and SFR(ν) and NPS(ν) are defined in one dimension for 

spatial frequency 𝜈 = √𝜈𝑥
2 + 𝜈𝑦

2, which has units of 

Cycles/Pixel. 
Objects to be analyzed are typically rectangles of 

dimensions w × kw, where k = 1 for a square or 4 for a 
1:4 aspect ratio rectangle. Amplitude, VP−P, is typically 
taken from the chart (usually with the ISO standard 4:1 
contrast ratio). The equation for the rectangular object 
(Figure 19) is 

𝑔(𝑥, 𝑦) = 𝑉𝑃−𝑃 ⋅ rect (
𝑥

𝑤
) ⋅ rect (

𝑦

𝑘𝑤
)            (18) 

where rect(x/w) = 1 for -w/2 < x < w/2; 0 otherwise  
 

Nomenclature  
Although we often omit the calculation type (Edge 

Variance or NEQ (Noise Image)) when referring to infor-
mation capacity, C, in most cases it can be deciphered from 
context.  

Prior to the introduction of the Noise Image calcula-
tions, C refers to the Edge Variance calculation. In the re-
mainder of this paper, C, which is referenced infrequently, 
is CNEQ, derived from the Noise Image calculation, which is 
preferred for uniformly or minimally processed images. 
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Figure 19. rect function 

         𝐺(𝜈𝑥 , 𝜈𝑦) = 𝑘𝑤2 𝑉𝑃−𝑃

sin(𝜋𝑤𝜈𝑥)

𝜋𝑤𝜈𝑥

 
sin(𝜋𝑘𝑤𝜈𝑦)

𝜋𝑘𝑤𝜈𝑦

=  𝑉𝑃−𝑃 𝐺𝑟𝑒𝑐𝑡(𝜈𝑥, 𝜈𝑦)                                       (19) 

where 𝐺𝑟𝑒𝑐𝑡 = 𝑤 sinc(𝜔𝑤 2⁄ ) = 𝑤 sinc(𝜋𝑤𝑣) is the 
Fourier transform of rect(x/w) for frequency v. Note that 
Grect has units of 1/v2, and since v has units of 
cycles/pixel, G(vx, vy) has units of pixels2. 

SNRi2 is calculated numerically by creating a two-
dimensional array of frequencies (0 to 0.5 c/p in 51 
steps) with νx on the x-axis and νy on the y-axis, filled 

with frequency 𝜈 = √𝜈𝑥
2 + 𝜈𝑦

2. These frequencies are 

used to create a 2D array that can be numerically 
summed [23].  

𝑆𝑁𝑅𝑖2 = Δ𝜈𝑥 Δ𝜈𝑦  ∑ ∑
𝑆𝐹𝑅2(𝑖, 𝑗) 𝐺2(𝑖, 𝑗)

𝑁𝑃𝑆(𝑖, 𝑗)
    (20)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1
  

 

Figure 20. SNRi for a sharp, low-noise (ISO 100) image 

Note that like C4, 𝑆𝑁𝑅𝑖 is strongly affected by expo-
sure and chart contrast. But unlike C4, SNRi is also affe-
cted by Image Signal Processing (ISP; i.e., electronic fil-
tering such as sharpening or lowpass filtering).  

Although SNRi is a powerful measurement, we also 
give weight to a closely related measurement, Edge Loca-
tion σ = 1/Edge SNRi, for determining the performance 
of ISP applied before sending the image to the Object 
Recognition/Machine Vision/AI block). 

As a result of Parseval’s theorem, which states that 
the integrals of a Fourier transform pair, r(x) and R(ω), 
must be equal, 

∫ |𝑟(𝑥)|2𝑑𝑥 
∞

−∞

=  
1

2𝜋
∫ |𝑅(𝜔)|2𝑑𝜔 = ∫ |𝑅(2𝜋𝑓)|2𝑑𝑓 

∞

−∞

∞

−∞

 

 (21) 

We observe that SNRI2 is equivalent to the total (inte-
grated) noise-whitened Signal/Noise energy of the 
object in the spatial domain.  

SNRi displayed in dB per pixel squared 
Because standard SNRi plots can be difficult to read 

(in part because SNRi has units of pixels2), SNRi can also 
be plotted in dB per pixel2 (Figure 21). It is somewhat 
easier to read than the standard SNRi image, but it is 
more of a relative measurement— useful for evaluating 
changes from image processing. 

 

Figure 21. SNRi per pixel2 for a sharp, low-noise (ISO 100) image 

Object visibility and SNRi   
One of the uses of SNRi measurements is to predict 

object visibility for small, low contrast squares or rec-
tangles. The SNRi prediction begs for visual 
confirmation.  

We have developed a display that does this with real 
slanted-edge image data. Despite the trickery, the data is 
directly from the acquired image. 

We show two images, below: Figure 22 for a rela-
tively low-noise image and Figure 23 for a noisy image 
(both from a camera with a Micro Four-Thirds sensor, at 
ISO 100 and 12800). The sides of the squares are w = 1, 
2, 3, 4, 7, 10, 14, and 20 pixels. The original chart has a 
4:1 contrast ratio (light/dark = 4), equivalent to a 
Michelson contrast 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑀𝑖𝑐ℎ = (light-dark)/
(light+dark) = 0.6. The outer squares have 
ContrastMich = 0.6. The middle and inner squares 
have ContrastMich = 0.3 and 0.15, respectively. 

How to use these images  

The yellow numbers are the square widths in pixels. 
The outer (left and right) patches correspond to the 
SNRi curves for the ISO 12233-standard 4:1 contrast 
ratio, where, according to the Rose model [16], SNRi of 5 
(14 dB) should correspond to the threshold of visibility.  

https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
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Figure 22. Low noise image, ISO 100. 

 

Figure 23. Noisy image, ISO 12800. 

The SNRi curve in Figure 24 is for the noisy ISO 
12800 image in Figure 23, above. The w = 1 squares are 
invisible; the w = 2 and 3 squares are only marginally 
visible, and w = 4 squares are clearly visible. In Figure 
23, the Y (luminance) channel SNRi at w = 2 is 15 dB; it 
reaches 19 dB for w = 3; a little above the expectation 
that the threshold of visibility is around 14 dB. 

 

 

Figure 24. SNRi for noisy ISO 12800 image (above) 

Only original pixels were used in these images of 
squares, but we used some “smoke and mirrors” tricks 
to make squares that have the same blur as the original 
image  

How the squares were made 

1. Expand the image if needed to make room for all the squares by 

adding mirrored versions of image to the sides, top, and bottom.  

2. Create a horizontal mirror of the full image. This is the “mirror” part. 

3. Create a mask consisting of ideal w × w squares, with 0 in the 

background, 1 in the squares, and sharp sides. 

4. Blur the squares with the MATLAB filter2 function. This is the 

“smoke” part. Determining the blur kernel was challenging. We 

found that we did not get good results by just using the 1D Line 
Spread function (LSF) in 2D. A more complex transformation was 

required.  

5. Linearize the two images (remove the gamma encoding). 

6. Combine them using the mask, using the original image where the 

mask = 0, the mirrored image where the mask = 1, and blending them 

elsewhere. 

7. Reapply the gamma encoding. 

Edge SNRi and Edge Location Standard 

Deviation (Edge Location σ) 
Edge SNRi and its inverse, Edge Location σ, are mea-

sures of the detectability of the edges of objects. The 
equation for Edge SNRi is similar to SNRi, described 
above and in [17, 22, 23].  

       𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2

= ∬ (
 |𝐻(𝜈𝑥 , 𝜈𝑦)|

2
 𝑆𝐹𝑅2(𝜈𝑥, 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦)
) 𝑑𝜈𝑥 𝑑𝜈𝑦

= ∬|𝐻(𝜈𝑥 , 𝜈𝑦)|
2

 𝐾(𝜈𝑥 , 𝜈𝑦) 𝑑𝜈𝑥 𝑑𝜈𝑦             (22) 

H(νx,νy) is the Fourier transform of the edges (the 
gradient) of the object to be detected.  

Because Edge SNRi has units of spatial frequency 
(1/distance), we report Edge Location Standard Devia-
tion, which has more intuitive units of distance. Lower is 
better for Edge Location σ. 

𝐸𝑑𝑔𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝜎 =
1

𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖
                 (22𝑎) 
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For a rectangle of dimensions w × kw, the function is 
the derivative, h(x, y), of the rectangle, g(x, y), that 
describes the object. 

VP−P is typically obtained from a chart with a n:1 = 4:1 
contrast ratio. SNRi and 1/Edge Location σ are both pro-
portional to the Michelson contrast ((n-1)/(n+1)), and 
can be scaled for different contrast levels.    

ℎ(𝑥, 𝑦) = 𝑉𝑃−𝑃 ∙ 𝑑 [rect (
𝑥

𝑤
)] /𝑑𝑥 ∙ 𝑑 [rect (

𝑦

𝑘𝑤
)] /𝑑𝑦 

=  𝑉𝑃−𝑃 ∙ 𝐼𝐼 (
𝑥

𝑤
) ∙ 𝐼𝐼 (

𝑦

𝑘𝑤
)                            (23) 

where II(x/w) = d(rect(x/w)/dx (Figure 25) is called 
the “odd impulse pair,” consisting of a pair of Dirac delta 
functions of opposite polarity separated by the object 
width w.  

 

Figure 25. Odd impulse pair 

H(νx,νy) is the Fourier transform of the edges of the 
object to be detected, equivalent to 2πv G(vx,vy) for 
frequency v. Expressed in two dimensions, 

𝐻(𝜈𝑥, 𝜈𝑦) = 2 𝑉𝑃−𝑃 sin(𝜋𝑤𝜈𝑥) sin(𝜋𝑘𝑤𝜈𝑦)     (24) 

H(vx, vy) is dimensionless. 
Edge Location σ2 = 1/Edge SNRi2 (Figure 26) is nu-

merically calculated using a similar equation to SNRi2. 

𝐸𝑑𝑔𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝜎2 = 1/𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2

= 1/ [Δ𝜈𝑥  Δ𝜈𝑦  ∑ ∑
𝑆𝐹𝑅2(𝑖, 𝑗) 𝐻2(𝑖, 𝑗)

𝑁𝑃𝑆(𝑖, 𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1
] 

 (25) 

 

Figure 26. Edge location σ for a sharp, low-noise (ISO 100) image 

SNRi and Edge Location σ are affected by signal 
processing (sharpening, etc.), making them useful for 

evaluating filtering (ISP filtering applied prior to the 
object recognition/machine learning/AI blocks).  

 

Line Spread Function (LSF) doublet results 

Edge Location σ is related to pairs of Line Spread 
Functions of opposite polarity called LSF doublets, r(x) 
(Figure 27), which are used in several key calculations. 

            𝑟(𝑥) = (𝐿𝑆𝐹(𝑥) − 𝐿𝑆𝐹(𝑥 − 𝑤))/𝜎    and 

𝑅(𝑣) =
𝐻(𝑣) 𝑀𝑇𝐹(𝑣)

√𝑁𝑃𝑆(𝑣)
                         (26) 

  

Figure 27. LSF doublets. w = 5.0 pixels (left), w = 0.5 pixels (right) 
Amplitude for w = 0.5 is 1/3 as large as for w = 5.0 pixels. 

As spacing w decreases, the peaks are shifted more 
from their original locations and amplitude decreases.  

As a result of Parseval’s theorem, Edge SNRI2, which 
is defined in frequency domain, is equivalent to the total 
(integrated) noise-whitened Line Spread Function 
doublet energy. 

Effects of Image Signal Processing (ISP) 
 
Several recent papers [24-26] state that appropriate 

image processing prior to Object Recognition, Machine 
Vision or Artificial Intelligence algorithms may improve 
the performance (accuracy, speed, and power consump-
tion) of AI systems. Because information capacity is 
independent of Image Signal Processing— at least with 
ISP that does not remove information, such as sharpe-
ning— it provides little guidance about filter design for 
optimal image processing. 

SNRi has some drawbacks for predicting the quality 
object detection. It indicates how well an object’s pre-
sence can be detected, but it says nothing about its 
shape. Shape detection is dependent on the edge detec-
tion, which is quantified by Edge Location σ = 1/Edge 
SNRi. And there is the problem of object color. What If 
the object has the same color as the background? (Think 
of gray cars in front of gray concrete.) In such cases it is 
the edge that matters. For this reason, Edge Location σ 
should be given at least comparable weight to SNRi 
when designing filters. 
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Image signal processing algorithms can be designed 
to optimize a specific task, for example, the detection of 
an object of a specific size, often a small rectangle, or the 
detection of its edges. In practice, ISP needs to perform a 
multitude of tasks: detecting objects and edges greater 
than a minimum size and limiting interference from 
neighboring objects. 

The results in the table below were obtained starting 
with an unsharpened image, applying various combina-
tions of sharpening (Radius R, Amount A) and gaussian 
lowpass filtering (blurring) to the image, which was line-
arized prior to filtering, then restored to its original 
gamma encoding afterwards. SNRi and Edge SNRi are for 
w × 4w rectangles (w in pixels). Nuniform was used for 
these images, which had no noise peak. (A peak was only 
present in the JPEG, which was not analyzed.) Standard 
(non-interpolated) binning was used. 

Table 2. Results for various filters for a 24 MP Micro Four-

Thirds camera, 1 inch sensor, ISO (EI) 100, w × 4w rectangle. 

Filter 
(ISO 
100) 

MTF50 
C/P 

Edge 
Loc σ 
pixels 
w = 1 

Edge 
Loc σ 
pixels 
lg w 

SNRi 
dB/Pxl2 
w = 1 

SNRi 
dB/Pxl2 
w = 5 

Cmax 
(NEQ) 

None 0.214 0.306 0.246 25.5 28.6 4.08 

σ=0.7 
LPF 

0.160 0.316 0.226 27.0 30.5 3.91 

Sharp 
R2A3 

0.541 0.370 0.303 23.5 26.2 3.8 

Sharp 
R2A3, 
σ=0.7 

0.335 0.336 0.261 25.1 27.8 3.86 

Sharp 
R1A2 
σ=0.7 

0.265 0.303 0.239 25.8 28.7 
 

4.09 

Table 3. Results for various filters for a 24 MP Micro Four-

Thirds camera, ISO (EI) 800, w × 4w rectangle. 

Filter 
(ISO 
800) 

MTF50 
C/P 

Edge 
Loc σ 
pixels 
w = 1 

Edge 
Loc σ 
pixels 
lg w 

SNRi 
dB/Pxl2 

w = 1 

SNRi 
dB/Pxl2 
w = 5 

Cmax 

(NEQ) 

None 0.216 0.767 0.593 18.2 22.2 2.96 

σ=0.7 
LPF 

0.156 0.654 0.476 20.4 24.5 2.87 

Sharp 
R2A3 

0.529 0.814 0.666 16.9 20.3 2.82 

Sharp 
R2A3, 
σ=0.7 

0.342 0.703 0.563 18.4 21.7 2.83 

Sharp 
R1A2 
σ=0.7 

0.274 0.705 0.555 18.7 22.4 2.96 

 
We can make several observations from these results.  
• A pure lowpass filter (LPF σ = 0.7) improves 

Edge Location σ and SNRi. 
• Pure sharpening (R2A3) degrades both metrics. 

This illustrates how strong oversharpening, 
which is often used boost summary metrics like 

MTF50, can degrade performance. It can be iden-
tified by strong edge “halos” and SFR peaks 
(Figure 13). 

• Sharpening + LPF slightly improves Edge Loca-
tion σ for small w, and improves other metrics 
somewhat less than a pure LPF. However, the 
sharpened + LPF images will be less susceptible 
to interference from neighboring objects. 

 
The bottom line is that appropriate lowpass filtering 

as well as lowpass filtering with some sharpening can 
potentially improve performance. Of course, these are 
just a few of many filter combinations of potential inte-
rest. And they are only for one specific camera at two 
ISO speeds (Exposure Indices 100 and 800).  

And as we indicated, filters should be designed for 
more than a single task. The pure LPF performs well in 
the absence of interfering objects. Some sharpening may 
reduce the effects of interference, and as we have shown, 
sharpening, when combined with lowpass filtering, 
causes little performance degradation. 

Matched filters 
A matched filter [27] (sometimes called a “noise-whi-

tened matched filter”) is a custom filter that maximizes 
the SNR, i.e., the detection probability, for 

• a system with a specific response, and 
• a specific object (or edge). 

Matched filters were originally developed for impulse 
detection in radar (a single airplane at a large distance). 
They are discussed in ICRU Report 54 [17], but were 
mostly ignored outside medical imaging because they 
were not directly relevant to human vision.  

For an impulse (a δ-function, i.e., a distant airplane), 
the matched filter transfer function is identical to the 
noise-whitened system response (where “noise white-

ning” is division by 𝑁𝑉(𝑓), or equivalently, √𝑁𝑃𝑆(𝑓) ). 

 ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓)  = 𝑆𝐹𝑅(𝑓)/(√𝑁𝑃𝑆(𝑓)) = √𝐾(𝑓)      (26) 

A matched filter, ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓), which optimizes SNRi 
or Edge Location σ, has the same frequency spectrum as 
the system, including the edge or object. For edge or 
object detection,  

ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓)  =  
|𝑃(𝑓)| 𝑆𝐹𝑅(𝑓) 

√𝑁𝑃𝑆(𝑓)
= |𝑃(𝑓)|√𝑆(𝑓)    (27) 

P(f) is equal to G(f) (Equation (19); the Fourier trans-
form of the object) for SNRi or H(f) (Equation (24); the 
Fourier transform of the edge) for Edge Location σ.  

Figures 28 and 29 show the transfer functions for 
matched filters for SNRi or Edge Location σ. A Sharpe-
ning + LPF filter designed to approximate the matched 

https://www.icru.org/report/medical-imaging-the-assessment-of-image-quality-report-54/
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filter for Edge Location σ (Figure 29) has a response 
peak near 0.20 Cycles/Pixel (Figure 30).  

 

  

Figure 28. Matched filter for optimum object detection: Lowpass (LPF). 

  

Figure 29. Matched filter for optimum edge detection. Can be 
approximated with sharpening + LPF. 

Matched filters are optimized for a single task: detec-
ting an object or edge of a certain size (by maximizing 
SNRi or minimizing Edge Location σ). But real-world 
filters must perform a multitude of tasks: they must 
detect objects and edges of varying sizes, contrasts, and 
colors. This calls for tradeoffs, which are fortunately 
quite mild. Since large objects are usually detected well, 
filters should be designed to perform well with small 
objects or edges.  

Figure 30 shows the transfer function of a filter with 
a σ = 0.7 gaussian LPF + sharpening with Radius = 1 
and Amount = 2 (R1A2G07). 

This transfer function approximates the edge 
matched filter in Figure 29. The matched filter can be 
realized by combining a standard lowpass filter (Bessel, 
Butterworth, etc.) with standard sharpening or unsharp 
masking (USM). Details for realizing this filter are 
beyond the scope of this paper. 

 
 

 

Figure 30. Filter transfer function for σ = 0.7, R1A2. An approximate tradeoff 
between optimizing SNRi and Edge Location σ. 

Exposure and pixel level 
Most of the performance metrics discussed in this 

paper, including NEQ(f), C4, SNRi, and Edge Location σ, 
(but not Cmax) are sensitive to exposure. For this reason, 
we need to maintain consistent exposure when acqui-
ring images for comparing different cameras. Linearized 
Digital Numbers (DNs or pixel levels) should be similar. 
A reasonable level will need to be established as we 
develop best practices for measurement. 

Low light measurements are, of course, important, 
especially for video systems, where the maximum expo-
sure time is limited, making it necessary to increase the 
analog gain (at the expense of SNR) at low light levels. 
This makes it fruitful to measure C4 as a function of 
exposure over a range of light levels.  

Summary 
The basic premise of this work is that traditional 

sharpness and noise metrics are insufficient to directly 
predict object and edge detection performance, and 
hence are poor predictors of Machine Vision/Artificial 
Intelligence system performance. Also, they provide no 
insight into how to design image processing for optimum 
performance. The new metrics and techniques described 
here are intended to accomplish this. They include 

 
1. Methods for measuring camera noise from slanted 

edges— an initial method for measuring spatially 
dependent noise, 𝑁(𝑥) = 𝜎𝑠

2(x), from the edge vari-
ance method, and more accurate method using the 
noise power spectrum, NPS(f), from the noise 
image method. The latter method is more accurate, 
but applies only to minimally or uniformly pro-
cessed images. 

2. Techniques for calculating camera information 
capacity from the signal and noise power from both 
methods. 

Edge Matched Filter 
(Sharpening + Lowpass) 

optimizes Edge Location σ 

w = 2 
w = 1  

Object Matched Filter 
(Lowpass) 
optimizes 

Object SNRi 
w = 2 
w = 1  
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3. A set of metrics for quantifying object and edge 
detection performance, derived from the noise 
image method, including NPS(f), NEQ(f), CNEQ, SNRi, 
and Edge Location σ. 

4. A technique for designing matched filters for opti-
mizing detection performance, based on a tradeoff 
between optimizing SNRi and Edge Location σ and 
minimizing interference from nearby objects. 

5. Note that the equations for the information metrics 
and matched filters all contain the equation kernel, 
𝐾(𝑓) = 𝑆𝐹𝑅2(𝑓)/𝑁𝑃𝑆(𝑓).  This unifies the results 
from the noise image method. 

 
We need to verify that these calculations and design 

techniques work as intended— that they correlate well 
with MV/AI system performance. 

 
The key concepts presented in this paper are 
 

1. Information capacity, which combines sharpness, 
noise, contrast loss, is a fundamental figure merit 
for imaging systems that is appropriate for 
selecting cameras. 

2. Both spatial and frequency-dependent noise can be 
measured from slanted-edge regions at the same 
location, in the presence of the signal. Co-locating 
signal and noise measurements makes the mea-
surements convenient, robust, and reduces the 
likelihood of error.  

3. A noise peak in σs(x) allows bilateral-filtered 
images to be distinguished from uniformly-pro-
cessed images for “black box” cameras with 
unknown image processing, so that the optimum 
noise calculation can be selected. 

4. Information capacity, Cn, measured from n:1 con-
trast slanted edges (typically 4:1), is sensitive to 
chart contrast and exposure, making it useful for 
measuring low light performance. It can be extra-
polated to calculate a stable maximum information 
capacity, Cmax. 

 
Camera information capacity and related information 

metrics are still novel in the imaging industry. Significant 
effort will be required to make them better known. But 
the units for C— information bits per pixel (or total 
image) for a specified ISO speed or exposure— are 
intuitive and easy to understand. 

We would like to see information metrics, including 
information capacity, SNRi, and Edge Location σ, become 
standard specifications for cameras intended for ma-
chine vision. Cameras should be characterized with mea-
surements made over a range of ISO speeds (exposure 
indices) and/or light (lux) levels. We are optimistic that 
this will lead to improved performance and reduced 
energy use [28]. 

Future work 
• Collaborate with partners in academia and industry 

to correlate camera information capacity, C, and 
object and edge detection metrics, SNRi and Edge 
Location σ, with the performance of Machine Vision 
and Artificial Intelligence systems. This may in-
volve using image data sets like Audi A2D2 [29] to 
determine mean Average Precision (mAP) and 
Intersection over Union (IoU) [30]. 

• Verify the validity and improve insight into the 
physical meaning of the new Edge Location σ met-
ric, which is similar to 1/SNRi, but has not has not 
been subjected to the same rigorous verification 
[17, 23]— correlating it with Bayesian statistics.  

• Become familiar with the measured numbers for 
the metrics (e.g., what are “good” values of SNRi or 
Edge Location σ?)  

• Transform units from native sensor native units of 
cycles/pixel to practical units like cycles/angle or 
cycles per object distance, as needed. 

• Determine best practices for measuring the infor-
mation capacity of High Dynamic Range (HDR) 
sensors. 

• Determine best practices for designing the output 
(matched) filter: How much weight should SNRi 
and Edge Location σ be given? How much shar-
pening is needed to limit external interference? 

• Study the effects of demosaicing, which may 
include nonlinear processing that enhances edges, 
on information capacity. 

• Work on the ISO 23654 standard, Photography - 
Digital cameras - Image Information Metrics, 
overseen by ISO TC42.  

• Explore the correlation between C with the subject-
ive visual appearance of images. This is challenging 
because visual perception is strongly affected by 
image processing (sharpening, color balance and 
saturation, tonal response, etc.).  
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Revised — Not the published paper 
Some descriptions have been changed, but not the key calculations. Major 

differences are an improved explanation of the noise calculations and the addition 
of Edge Location σ = 1/Edge SNRi. 
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