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Abstract 

We present a comprehensive framework for conveniently measu-

ring camera information capacity and related performance metrics 
from the widely used slanted-edge (e-SFR) test pattern.  

The goal of this work is to develop a set of image quality metrics 

that can predict the performance of Machine Vision (MV) and 

Artificial Intelligence (AI) systems, assist with camera selection, 
and use for designing electronic filters to optimize system perfor-

mance. The new methods go far beyond the standard approach of 

estimating system performance based on sharpness and noise (or 

Signal-to-Noise Ratio) — which often involves more art than 
science. 

Metrics include Noise Power Spectrum (NPS), Noise Equivalent 

Quanta (NEQ), and two metrics that quantify the detectability of 

objects and edges: Independent Observer Signal-to-Noise Ratio, 
SNRi, and Edge SNRi. We show how to use these metrics to design 

electronic filters that optimize object and edge detection 

performance. 

The new measurements can be used to solve several problems, 
including finding a camera that meets performance requirements 

with a minimum number of pixels— important because fewer pixels 

mean faster processing and lower energy consumption as well as 

lower cost. 

Introduction 
We introduce the concept of information capacity, 

which is calculated from signal power, noise power, and 
bandwidth, then we describe an enhancement to the ISO 
12233 slanted-edge e-SFR algorithm that we implemen-
ted to improve measurement accuracy and consistency.  

Next, we describe the two methods for calculating 
noise power (and hence information capacity) from the 
familiar slanted-edge (e-SFR) test pattern, specified by 
the ISO 12233:2014/2017/2023 standard [1]. 
1. The edge variance method, which calculates spatially 

dependent noise power, σs
2(x), and 

2. The noise image method, which calculates frequency-
dependent noise (noise power spectrum, NPS(f)), as well 
as several additional metrics, including noise equivalent 
quanta, NEQ, and metrics for object and edge detection, 
SNRi, and Edge SNRi. 

We describe how to use these metrics to design 
electronic filters, called matched filters, for optimizing 
object and edge detection performance. 

Information capacity 
Camera information capacity, based on Claude 

Shannon’s ground-breaking work on information theory 

[2-3] has long held promise as a figure of merit for a 
variety of imaging systems. It has been discussed in 
several technical papers [4-7] and in two textbooks [8-
9], but it has failed to gain widespread adoption in the 
imaging industry, primarily because it was difficult to 
measure 

In electronic communications systems, channel 
(information) capacity, C, defines the maximum rate in 
bits per second that information can be transmitted 
through a channel without error. For additive white 
gaussian noise, it is given by the deceptively simple 
Shannon-Hartley equation. 

𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = ∫ log2 (1 +

𝑆(𝑓)

𝑁(𝑓)
)

𝑊

0

        (1) 

It is quite logical to apply this definition to imaging 
systems, where C has units of bits/pixel. But signal 
power, S(f), and noise power, N(f), must be measured 
with care, which was traditionally difficult and error-
prone because S(f) and N(f) had to be measured at 
separate locations. To make matters worse, most JPEG 
images from consumer cameras usually have nonuni-
form image processing (bilateral filtering) [10] that 
sharpens images near contrasty features such as edges 
(boosting high frequencies) but reduces noise elsewhere 
(lowpass filtering). This increases the measured 
information capacity while removing information.  

Because nonuniform image processing is so 
commonly applied, it is highly desirable to measure 
signal and noise at the same location in the image, i.e., to 
measure noise in the presence of signal. This is what the 
new slanted-edge methods accomplish. 

The slanted-edge measurement 
For context, we briefly review the slanted-edge 

algorithm.  
1. The image should be well-exposed, 

avoiding the dark “toe” and light 

“shoulder” response regions. 

2. Linearize the image by applying the 

inverse of the encoding gamma curve.  
3. Find the center of the transition 

between the light and dark regions for 

each horizontal scan line, yl (x).  
4. Fit a polynomial curve to the center 

locations.  
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5. Add each appropriately shifted scan line to one of four 

bins, depending on the location of the curve relative to the 

scan line. [The improvement described below interpolates 

each scan line, increasing the pixel count from N to 2N-1.] 

6. Combine the mean signal in each bin to obtain the 4× 
oversampled averaged edge for L scan lines, μs(x), illustrated 

in the upper plot of Figure 7. 

𝜇𝑠(x) =  
1

𝐿
∑ 𝑦𝑙(𝑥 − 𝛿)                   (2)

𝐿−1

𝑙=0
 

7. Calculate Spatial Frequency Response, SFR(f) (synony-

mous with MTF(f)), by differentiating the averaged edge, 
windowing it, then taking the magnitude of the Fourier 

transform, normalized to 1 (100%) at zero frequency. 

Illustrated in the lower plot of Figure 7. 

Improvement to the ISO 12233 slanted-edge 
(e-SFR) calculation 

Nomenclature— Spatial Frequency Response (SFR) 
and Modulation Transfer Function (MTF) are used syno-
nymously in the literature, but SFR is generally pre-
ferred in recent literature [1]. We use SFR here, although 
some plots are labeled MTF (which is more familiar) and 
we keep summary metrics such as MTF50, the spatial 
frequency where SFR drops to 50% of its zero-frequency 
value. 

The slanted edge is not the only pattern for calcula-
ting SFR. Prior to the improvement described here, the 
Siemens star produced smoother, more consistent 
results, but required far more space and computation 
time. Slanted edges, by comparison, are small and fast, 
but had somewhat rough response and artifacts that 
resemble noise, especially at high frequencies (>0.3 
Cycles/Pixel). This made it difficult to measure MTF10— 
the spatial frequency where SFR drops to 10% of its 
zero-frequency value, roughly equivalent to the Rayleigh 
diffraction limit. Figure 1 shows an example for a 12-
megapixel camera with a 1-inch sensor at ISO 1600. 

 

 

Figure 1. SFR (MTF) for 1 inch sensor camera at ISO 1600:  

Current ISO 12233 binning algorithm (uninterpolated). 

This anomalous response had little effect on common 
SFR summary metrics such as MTF50, which is why they 
have been mostly, though not entirely, ignored. But it 

significantly affected the accuracy and consistency of 
metrics such as NEQ, to be introduced below, that 
depend on 𝐾(𝑓) = 𝑆𝐹𝑅(𝑓)2/𝑁𝑃𝑆(𝑓). 

 

 

Figure 2. Interpolation diagram: N to 2N-1 pixel count 

The algorithm for the improvement is simple. Before 
performing the binning, interpolate the N pixels each 
scan line to obtain 2N-1 pixels. In MATLAB, this can be 
easily done with the interp2 function. ‘cubic’ interpola-
tion gives good results, but not very different from 
‘linear’, which is faster. The polynomial fit equation and 
frequency scale are adjusted accordingly. The result is an 
impressive improvement in the SFR curve visible in the 
smoothing and reduced MTF values above the Nyquist 
frequency in Figure 3 compared to Figure 1. 

 

Figure 3. SFR (MTF) for 1 inch sensor camera at ISO 1600:  
New interpolated binning algorithm. 

We have seen an improvement in almost every SFR 
curve we’ve observed [11], especially in sharp images 
(that have significant energy above 𝑓𝑁𝑦𝑞/2 = 0.25 𝐶/𝑃), 

and even in motion-blurred images that suffered from 
sawtooth artifacts in the Line Spread Function. Slanted-
edge results are much closer to Siemens star results for 
uniformly processed images, and it is now possible to 
reliably measure MTF10. We will be proposing this 
technique to the ISO TC42 committee, which is 
responsible for the ISO 12233 standard. 

We have already added the new technique to a 
variant of SFRMAT5— the free program available from 
Burns Digital Imaging [12] that is used as reference code 
for ISO 12233 standard. [11] contains more detail about 
the new calculation technique. 

The Edge Variance method for calculating 
noise and information capacity 

We will concisely describe the Edge Variance method, 
which was introduced in an earlier paper [13]. 
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 A simple addition to the ISO 12233 binning 
algorithm described above allows the variance of the 
signal, σs2 (the noise power), to be calculated in addition 

to the mean, μs.  
In addition to ∑ 𝑦𝑙(𝑥), calculate the sum of the 

squares of each scan line, ∑ 𝑦𝑙
2(𝑥). Then, 

𝜎𝑠
2(x) =

1

𝐿
∑ (𝑦𝑙(𝑥) − 𝜇𝑠(𝑥))2

𝐿−1

𝑙=0

=  
1

𝐿
∑ 𝑦𝑙

2(x) − (
1

𝐿
∑ 𝑦𝑙(x)

𝐿−1

𝑙=0
)

2𝐿−1

𝑙=0
 

 (3) 
σs

2(x) is the noise power, N(x), and σs(x) is the noise 

amplitude, √𝑁(𝑥) at each position on the oversampled 

array— including the edge transition, where noise was 
traditionally difficult to measure.  

[13] describes a form of quantization noise called 
binning noise that is largest near the image transition— 
where the Line Spread Function,  𝐿𝑆𝐹(𝑥) = 𝑑𝜇𝑠(𝑥) 𝑑𝑥⁄  is 
maximum. It is subtracted from σs

2(x) to improve calcu-
lation accuracy. An unexpected benefit of the improved 
e-SFR calculation is that binning noise is only half as 
large as in the original calculation. It has only a minor 
effect on computation accuracy. 

Signal power, S  
The peak-to-peak signal amplitude, VP-P, (Figure 4) at 

low spatial frequencies is the measured difference 
between the means of the light and dark regions of the 
linearized slanted edge, μs(x). 

𝑉𝑝−𝑝 = ∆𝜇𝑠 = 𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘 = 𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛        (4) 

 

Figure 4. Slanted-edge amplitudes (voltages, V) 

Since our intent is to calculate the information (or 
channel) capacity, which is the maximum information 
for the VP-P signal, we assume a signal distribution that 
maximizes information: the uniform distribution. The 
variance of the uniformly-distributed signal, which is the 
average signal power at low spatial frequencies, is 

𝜎𝑉
2 = 𝑆𝑎𝑣𝑔(0) = (𝜇

𝑠𝐿𝑖𝑔ℎ𝑡
− 𝜇

𝑠𝐷𝑎𝑟𝑘
)2/12 = 𝑉𝑝−𝑝

2 /12  

 (5) 

The Shannon-Hartley equation uses the average 
frequency-dependent signal power, Savg(f).  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝 𝑀𝑇𝐹(𝑓))
2

12⁄                   (6) 

Signal power, S, is proportional to the square of the 
chart’s Michelson contrast, 
𝐶𝑀𝑖𝑐ℎ =  (𝜇𝑠𝐿𝑖𝑔ℎ𝑡 − 𝜇𝑠𝐷𝑎𝑟𝑘) (𝜇𝑠𝐿𝑖𝑔ℎ𝑡 + 𝜇𝑠𝐷𝑎𝑟𝑘)⁄ , for a 

properly linearized image, which is easy to obtain if the 
camera does not approach saturation at low or high 
pixel levels. Note that Smax ≤ 1 for linearized images 
normalized to 1.  

Noise power, N 
Noise power, N, has the same units as signal power, S; 

hence S/N is dimensionless. 
For nonuniformly-processed images, noise near the 

edge transition― rather than noise measured in flat 
patches― dominates system performance. The transition 
region is defined by the Line Spread Function, 𝐿𝑆𝐹(𝑥) =
𝑑𝜇𝑠(𝑥)/𝑑𝑥, shown in Figure 5.  

 

 

Figure 5. Line Spread Function, LSF = dμs(x)/dx for the strongly 
sharpened bilateral-filtered image in the example below. 

The value of N to be entered into the Shannon-Hart-
ley equation depends on the detected image processing 
type. Two distinct image processing types cover most 
cases of interest. 

 
Uniformly or minimally-processed images, often 

TIFFs converted from raw files (raw→TIFF). Most 
cameras to be evaluated for Machine Vision/Artificial 
Intelligence are in this category. They can be identified 
by the lack of a strong noise peak near the transition. 

 

https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem#Statement_of_the_theorem
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Figure 6. Noise amplitude σs(x) for uniformly processed image (TIFF from 
raw; no sharpening or noise reduction). ISO 100. The bold black curve is the 
Y-channel, smoothed with a 1.25-pixel kernel before 4× oversampling. 

Since noise can be a rough function of x (Figure 6), a 
moderately large region size is used for calculating the 
value of N for the Shannon-Hartley equation. Noise is 
averaged over a region defined as the edge center 
± 1.5×PW20, where PW20 is the width of the region 
where the Line Spread function 𝐿𝑆𝐹(𝑥) = 𝑑𝜇𝑠(𝑥) 𝑑𝑥⁄ ≥
0.20 𝐿𝑆𝐹𝑚𝑎𝑥.  

𝑁𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = mean(𝜎𝑠
2(𝑥)) 

for   𝑥 = edge center ± 1.5 × 𝑃𝑊20.               (7) 

Bilateral-filtered images [10] include most JPEG 
images from consumer cameras. Bilateral filters sharpen 
images near contrasty features such as edges, but blur 
them (to reduce noise) elsewhere. This causes a distinct 
noise peak, shown in Figure 7, close to the edge transit-
ion, which can dominate camera performance (because 
SFR is also measured at the transition). We have long 
known about the noise peak, but we previously had no 
convenient way to observe it. 

 

 

Figure 7. Noise amplitude σs(x) for bilateral-filtered image (sharpened 
near edges; noise-reduced elsewhere) from a camera JPEG. ISO 100. 

Noise power, Npeak, is the square of the noise ampli-
tude at the peak, smoothed slightly (with a rectangular 
kernel of length PW20/2) to remove jaggedness. This is 
a somewhat arbitrary choice, but it produces reasonably 

consistent results. Npeak also works with minimally pro-
cessed images, but results are less consistent than 
Nuniform.  

The noise calculation method (Nuniform or Npeak) may 
be selected manually or automatically, based on the 
presence of a detected peak near the transition. Some 
additional considerations: 
• Noise is not exactly white, but is close enough to 

yield good results. This assumption is supported by 
experimental results in [22]. The Noise Image 
method, below, calculates the noise spectrum. 

• Noise power is larger on the lighter side of the edge 
due to photon shot noise, which increases with the 
number of photons reaching the sensor pixels. The 
mean, Nuniform, includes both sides.  

• For linear sensors, noise power increases with 
exposure, following the function 𝑁(𝑉) = 𝑘0 + 𝑘1𝑉, 
where k1 is the coefficient for photon shot noise, 
derived in [13]. 

• A noise peak may be visible on strongly (but uni-
formly) sharpened images. The peak is usually 
weaker than for bilateral-filtered images.  Nuniform is 
preferred in this case. Camera JPEG images are 
almost always bilateral-filtered.  

• Npeak is intended to provide a reasonable estimate 
of information capacity for bilateral-filtered ima-
ges, which includes most JPEGs from cameras. It is 
less accurate than measurements from minimally 
processed images, but it can be useful for estima-
ting the performance of “black box” cameras, which 
have unknown image processing. 

Bandwidth, W  
Bandwidth, W, is always 0.5 cycles/pixel (the Nyquist 

frequency, fNyq). Signals above Nyquist do not contribute 
to the information content; they can reduce it by causing 
aliasing— spurious low frequency signals like Moiré that 
can interfere with the actual image. Frequency depen-
dence comes from SFR(f), which is a component of 
Savg(f). 

Combining S, N, and W to obtain information 
capacity, C 

Once signal power, S, and noise power, N (either 
Nuniform or Npeak, as appropriate), have been obtained, we 
can calculate information capacity, C. 

         𝐶 = ∫ log2 (1 +
𝑆𝑎𝑣𝑔(𝑓)

𝑁
)

0.5

0

𝑑𝑓   

≅ ∑ log2 (1 +
𝑆𝑎𝑣𝑔(𝑖∆𝑓)

𝑁
) ∆𝑓                 (8)

0.5/∆𝑓

𝑖=0

 

https://en.wikipedia.org/wiki/Bilateral_filter
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Edge variance results: Edge, SFR, C 
Figure 8 shows the Edge and SFR response as well as 

calculated information capacity values (C4 and Cmax, to be 
introduced below). Similar plots in [13], made with the 
old e-SFR calculation (without interpolation), are 
rougher, as expected. 

 

  

Figure 8. Edge and SFR (MTF) plot for compact digital camera for an 
unsharpened TIFF from raw. Upper: Mean edge μs(x). Lower: SFR(f). 
C4 is the Shannon information capacity for a 4:1 contrast ratio edge. 

SFR(f), which is sometimes confused with bandwidth, 
can take a large bite out of C, especially since it is 
squared in the above equation. [13] contains an explana-
tion of how increasing SFR can lead to significant 
aliasing-related artifacts, such as Moiré, that degrade 
performance. 

Measurement technique 
Test chart edge contrast should be between 2:1 and 

10:1, with 4:1 (specified in the ISO 12233 e-SFR stan-
dard) recommended. Edge contrast greater than 10:1 
increases the likelihood of nonlinear operation (satura-
tion or clipping), which will compromise the results.  

Images should be well-exposed because saturation or 
clipping can cause misleading results.  

The camera should be well-focused. Sturdy camera 
support should be employed. 

Although results are relatively insensitive to ROI 
selection, some care must be taken to obtain good 
consistency. ROIs should be reasonably large; at least 
30x60 pixels is recommended. If possible, the edge 
should be centered in the selected region, and there 
should a reasonable amount of “breathing room” on the 
sides.  

Additional assumptions 
A key assumption is that the camera’s dynamic range 

(the range of tones that can be reproduced with good 
contrast and Signal-to-Noise Ratio (SNR)) is sufficient 
for the intended task. Most modern image sensors have 
dynamic ranges greater than 60dB (1000:1); high dyna-
mic range (HDR) sensors have 120 dB or more. The 
majority of scenes in pictorial, medical, or robotic (but 
not automotive) imaging have tonal ranges under 60 dB. 
Lens flare (stray light) typically limits practical camera 
dynamic range to under 100 dB, which can impact auto-
motive night driving by fogging important dark to mid-
dle tones. If there are concerns about dynamic range, we 
strongly recommend measuring it with a transmissive 
chart.  

Other assumptions: sensor nonuniformities (fixed-
pattern noise, also called PRNU (Photo Response 
Nonuniformity) are included in noise measurements. 
Tonal response is well-behaved (typically following a 
gamma curve, except for the extreme highlights and 
shadows). Stray (flare) light is not too severe. 

Because the measured value of C is closely tied to the 
n:1 chart contrast ratio, where n ≤ 10 to minimize satura-
tion or clipping, we specify n when C is reported, e.g., C4 
for charts with a 4:1 contrast ratio.  

Sensitivity to exposure 
Because both noise power, N, and amplitude range, 

ΔV, increase with exposure, C4 is a strong function of 
exposure, as illustrated in Figure 8. 

Consistent exposure can be difficult to achieve with 
autoexposure consumer cameras because their JPEG 
output files often have “shoulders” in their tonal 
response (regions of reduced highlight contrast 
intended to improve pictorial quality by minimizing 
saturated (“burnt out”) highlights). 

Implementing a shoulder requires extra headroom, 
i.e., a degree of underexposure, which can vary for diffe-
rent camera models. Since autoexposure is optimized for 
JPEG output, minimally processed files, typically TIFFs 
converted from raw with simple gamma curves 
(raw→TIFF), often appear to be underexposed.  

Maximum information capacity Cmax ― a more 
stable metric than C4 

Because the strong exposure-dependence of C4 
(Figure 9) affects its value as a performance metric, we 
have developed a new metric for maximum information 
capacity, Cmax, that is nearly independent of exposure. It 
is obtained in two steps. 

Step1:  Replace the measured peak-to-peak 
amplitude range, VP-P, with the maximum allowable 
value,  𝑉𝑃−𝑃_𝑚𝑎𝑥 = 1 (for systems normalized to a 
maximum amplitude of 1). This may seem like a 

https://www.imatest.com/solutions/dynamic-range/#sensordr
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simplification, but it works well for most cameras. 
Referring to the section on Noise Power, N,  

𝑆𝑎𝑣𝑔(𝑓) = (𝑉𝑝−𝑝_𝑚𝑎𝑥  𝑀𝑇𝐹(𝑓))
2

12⁄ = 𝑀𝑇𝐹(𝑓)2/12 

 (9) 
Step 2:  Replace the measured noise power, N, with 

Nmean, the mean of N over the range 0 ≤ V ≤ 1 (where 1 is 
the maximum allowable normalized signal amplitude V). 
The general equation for N for linear image sensors is 

                     𝑁(𝑉) = 𝑘0 + 𝑘1𝑉  (10) 
Equations for k0 and k1 and an adjustment to Cmax for 

bilateral-filtered images (which are less accurate than 
for minimally processed images) are derived in [13]. 

Cmax (Figure 9) is nearly independent of exposure for 
minimally or uniformly-processed images with linear 
sensors, where noise power, N, is a known function of 
signal amplitude, V, but it is only approximate for 
imaging systems with bilateral filtering or HDR 
(nonlinear) sensors, where noise power N is not a 
simple function of V. 
 

 

Figure 9. C4 and Cmax for minimally processed raw→TIFF and JPEG 
images for a 10 MP compact camera. 
Cmax is consistent, especially for the raw→TIFF image. 

High Dynamic Range (HDR) images 

Special care must be taken when calculating Cmax for 
HDR sensors, which have several cycles of SNR and noise 
as exposure increases [14]. 

 

 

Figure 10. Cyclic response of Signal-to-Noise Ratio for HDR sensor 

Noise N(V) increases monotonically, but jumps at the 
discontinuities of the SNR plot (Figure 10), around 
Log10(DN) = 3.6 and 4.8. The noise measurement 
depends on the location on the sawtooth curve where 
the measurement is made. Because of this and because 
each HDR sensor is different, there is no simple equa-
tion, comparable to (10) for calculating Cmax. It will 
require a separate measurement and an assumption 
about the maximum SNR, perhaps limiting it to the mean 
value in the sawtooth region (above Log10(DN) = 3 in 
Figure 10). For now, we recommend caution when 
calculating Cmax for HDR sensors. 

Information capacity results 
Table 1 shows three cameras with both raw and JPEG 

output that we tested for information capacity as a 
function of Exposure Index (ISO speed setting).  

Table 1. Cameras used in the tests 

1. Panasonic 
Lumix LX5 

2.14 µm pixel pitch. Compact 10.1-
megapixel camera with a Leica f/2 zoom 

lens set to f/4. 

2. Sony 
A6000 

3.88 µm pixel pitch. 24-megapixel micro 
four-thirds camera 

3. Sony A7Rii 4.5 µm pixel pitch. A 42-megapixel full-
frame camera with a Backside-

Illuminated (BSI) sensor 

 
The image in Figure 11, which was analyzed in [15], 

contains a 50:1 contrast Siemens star and four 4:1 con-
trast slanted edges. We used the upper-left slanted edge 
for most tests. The average background of the chart is 
close to neutral gray (18% reflectance) to ensure a good 
exposure. 

 

 

Figure 11. Typical image (cropped) including Siemens star and slanted-
edges to the left and right of the star. 

We captured both JPEG images and raw images, con-
verted by LibRaw to 24-bit sRGB TIFF (designated as 
raw→TIFF) with minimal processing (no sharpening, no 
noise reduction, and simple gamma-encoding). The 
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luminance channel (Y = 0.2125×R + 0.7154×G + 
0.0721×B) was analyzed. Results with 48-bit Adobe RGB 
conversion were similar. 

Figure 12 shows C4 as a function of ISO speed (Expo-
sure Index, which is proportional to analog gain) for 
raw→TIFF images (solid lines) and JPEG images (dotted 
lines). For the raw→TIFF images, the relationship 
between ISO speed and C is similar for all three cameras.  

Nuniform was used for the raw→TIFF images; Npeak was 
used for the bilateral-filtered JPEGs.  

 

Figure 12. Information capacity, C4, from 4:1 slanted-edge images. 

Solid lines for raw→TIFF images; Dotted lines for JPEGs. 

Cmax has a similar trend to C4, but is higher about 1.6. 
[13] contains more detail on the behavior of Cmax.  

Color channels 

The separate R, G, and B channels tend to have 
slightly lower C4 than the Y-channel because the noise in 
the separate channels is uncorrelated. Color is discussed 
in more detail in [13]. 

Although this paper has focused on demosaiced 
images, the slanted-edge method can also be applied to 
raw (undemosaiced) images.  

Effects of sharpening 
  

  

Figure 13. Edge/SFR (MTF) plots derived from the same image as 
Figure 7, where C4 = 1.93 b/p and Cmax = 3.69 b/p, raw→TIFF, ISO 100 

Sharpening Radius = 2; Amount = 2. C4 = 1.91 b/p; Cmax = 3.7 b/p. 

The examples in Figures 8 and 13 (and many others 
we ran) show that sharpening has little effect on slan-
ted-edge information capacity, as expected. The image 
used for Figure 13 (initially a minimally-processed TIFF) 
has been strongly Unsharp Mask (USM) sharpened with 
Radius = 2 and Amount = 2 (R2A3). It can be compared 
to Figure 8, where C4 = 1.93 and Cmax = 3.69 b/p. We 
observed a similar insensitivity of C to sharpening with 
Siemens stars [15]. 

Total information capacity 
The total information capacity, Ctotal, for the entire 

image is calculated from  

𝐶𝑡𝑜𝑡𝑎𝑙 = mean(𝐶)  ×  megapixels               (11) 

From Figure 14, the mean value of Cmax is 2.847 
bits/pixel. Since this camera has 16 Megapixels, the total 
capacity, CmaxTotal, for the Luminance (Y) channel = 45.55 
MB.  
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Figure 14.   3D contour eSFR ISO plot of Cmax for the Luminance (Y) 
channel, ISO 100 

Summary of the Edge variance method 
The edge variance method calculates the spatially 

dependent noise in addition to the signal from a slanted 
edge.  A mean (or peak value) of the noise is substituted 
into the Shannon-Hartley equation to calculate informa-
tion capacity, Cn (directly from an n:1 contrast chart) or 
Cmax (the maximum information capacity, which is 
independent of exposure and chart contrast).  

The Noise Image method, below, calculates the noise 
spectrum, which is used to derive several useful metrics 
related to edge and object detection. The noise spectrum 
is normalized using the edge variance noise. 

The Noise Image Method  
The noise image method is the second of two me-

thods for calculating noise and image information met-
rics. It calculates the frequency-dependent noise (the 
Noise Power Spectrum, NPS(f)) instead of the spatially 
dependent noise power, σs2(x).  This enables the calcula-
tion of a particularly rich set of metrics. 

The method involves inverting the ISO 12233 binning 
procedure. Noting that the 4× oversampled edge was 
created by interleaving the contents of 4 bins, each of 
which contains an averaged (noise-reduced) signal 
derived from the original image, we apply an inverse of 
the binning algorithm to set the contents of each scan 
line to its corresponding interleave (Inverse-binned, 
below). Since the inverse-binned image is a nearly 
noiseless replica of the original image, we can create a 
noise image by subtracting the inverse-binned image 
from the original image (which must be corrected for 
illumination nonuniformity in the direction of the edge).  

The three images are shown in Figure 15. The other 
images are displayed with gamma-correction. 

 

     
Original image       Inverse-binned           Noise image 

(de-interleaved) 
Figure 15. Noise image method, for a noisy (high ISO speed) image 

Noise image =  
             Original image – Inverse-binned image  (12) 

 
The noise image, which has a mean of zero, is dis-

played with an offset, lightened, and boosted in contrast 
for visibility. 

These images allow several additional image quality 
parameters to be calculated, including Noise Power 

(Wiener) Spectrum (NPS(f)) and Noise Equivalent Quanta 

(NEQ(f)), well-known in medical imaging systems, and 
described in an excellent review paper by Ian Cunningham 

and Rodney Shaw [16], and also in the obscure but 
valuable ICRU Report 54 [17]. (ICRU is the International 
Commission on Radiation Units & Measurements.) These 
measurements are little-known outside of medical 
imaging, in part because they have been difficult to 
measure. 

One caution is in order: the Noise Image method 
should only be used with minimally processed images: 
results are invalid for bilateral-filtered images and have 
limited value for images that have been sharpened or 
noise-reduced.  

Noise Power Spectrum (NPS) 
NPS(f), also called the Wiener spectrum (Figure 16), is 

used in the calculation of the key information metrics. 
The Noise Amplitude (Voltage) Spectrum, 𝑁𝑉(𝑓) =

√𝑁𝑃𝑆(𝑓)  is also of interest.  

The 1D Noise Power or Voltage spectrum is derived 
from a 2D Fourier transform (FFT) of the noise image.  

 
• Noting that f = 0 at the center of the 2D FFT image, 

divide it into several annular regions, and find the 
average noise power for each region. This procedure 
has been used for the Imatest Spilled Coins/Dead 
Leaves calculations since 2013, and has been tested 
thoroughly. 

• Because this procedure does not maintain the inva-
riance in energy between the spatial and frequency 
domains implied by Parseval’s theorem, NPS(f) is 
normalized so that the one-dimensional integrals in 
frequency and spatial domain are equal. 

https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://en.wikipedia.org/wiki/Parseval%27s_theorem
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∫ 𝑁𝑃𝑆(𝑓) 𝑑𝑓 = ∫ 𝜎𝑠
2(𝑥) 𝑑𝑥 = ∫ 𝑁(𝑥) 𝑑𝑥        (13) 

Even though this paper focuses on metrics derived 
from the noise image method, the spatially dependent 
noise from the Edge variance method, 𝜎𝑠

2(𝑥), is useful for 
two purposes. 

• to determine what type of image processing 
has been applied. 

• to normalize NPS(f), ensuring consistent 
scaling, even for small ROIs, where the de-
binned image is not entirely noiseless.  

Demosaicing typically causes the Noise Power Spec-
trum to drop to about half its low frequency value at the 
Nyquist frequency (fNyq = 0.5 C/P). 

 

 

Figure 16. Noise Power Spectrum (NPS(f)) 

The primary use of NPS(f) is for the calculation of 
most of the image information metrics introduced in this 
paper— NEQ, CNEQ, SNRi, Edge SNRi, and matched filter 
transfer functions.  

It is a part of the kernel k that appears in the equa-
tions for most of the metrics. 

𝐾(𝑓) = 𝑆𝐹𝑅2(𝑓)/𝑁𝑃𝑆(𝑓)                    (14) 

Equations will be written in standard form, then with 
K(f). Because uniform filtering affects SFR2(f) and NPS(f) 
identically, K(f) is not affected by uniform filtering, such 
as sharpening or lowpass filtering.  

The noise autocorrelation, which is inverse Fourier 
transform (IFT) of NPS(f), is potentially useful for evalu-
ating the crosstalk between image sensor pixels, but the 
Bayer Color Filter Array (CFA) makes such measure-
ments challenging. 

Noise Equivalent Quanta, NEQ 
NEQ(f) (Figure 17) is a frequency-dependent Signal-

to-Noise (power) Ratio, related to the number of quanta 
that would result in the measured SNR when photon 
shot noise is dominant. It was described in 1999 by Cun-

ningham and Shaw [16] and in 2016 by Keelan [18], and 
it is used in medical imaging [16, 17, 19]. 

𝑁𝐸𝑄(𝑓) =
𝜇2 𝑆𝐹𝑅2(𝑓)

𝑁𝑃𝑆(𝑓)
=  𝜇2 𝐾(𝑓)               (15) 

where the mean linear signal, μ, can be defined in 
either of two ways, depending on how NEQ is to be 
applied.  

 

 

Figure 17. Noise Equivalent Quanta (NEQ(f)) 

In the standard definition of NEQ, 𝜇2 = 𝑉𝑚𝑒𝑎𝑛
2  (Figure 

4). If NPS is dominated by photon shot noise, we can use 
the well-known property of the Poisson distribution, 
𝑆𝑁𝑅2 = �̅� (where �̅� is the mean count of the detected 
quanta.) to show that 𝑁𝐸𝑄(0) = �̅�. For example, NEQ(0) 
= 200 corresponds to a mean of �̅� = 200 detected quanta 
per pixel. But because nonuniform illumination can 
increase NPS at the lowest spatial frequencies, causing 
NEQ to decrease, the maximum value of NEQ appears to 
be better for estimating �̅�. 

The above equation can be used for calculating 
Detective Quantum Efficiency), 𝐷𝑄𝐸(𝑓) = 𝑁𝐸𝑄(𝑓)/�̅�𝑖, 
where �̅�𝑖 is the mean number of quanta incident on each 
pixel. This requires a separate (and exacting) measure-
ment of �̅�𝑖. But because the slanted edge has two levels, 
we are not currently using it to measure DQE.  

NEQ(f) is not affected by electronic filtering. 

Information capacity from NEQ, CNEQ 
NEQinfo(f) (a variant of NEQ), calculated from (15) 

using 𝜇 = 𝑉𝑃−𝑃/√12 (to be consistent with the Edge 
Variance calculation for uniformly distributed levels), is 
signal power divided by noise power. It can therefore be 
substituted into the Shannon-Hartley equation to 
calculate information capacity, CNEQ. 

𝐶𝑁𝐸𝑄 = ∫ log2 (1 + 𝑁𝐸𝑄𝑖𝑛𝑓𝑜(𝑓)) 𝑑𝑓
𝑊

0

=  ∫ log2(1 + 𝜇2 𝐾(𝑓)) 𝑑𝑓
0.5

0

     (16) 
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where W = fNyq = 0.5 Cycles/Pixel. [Author’s note: I 
thought I discovered this connection, but I found it in 
papers on PET scanners and Digital Mammography 
by Christos Michail et. al. [20-21]— almost certainly 
unknown outside medical imaging.] 

The key results, C4(NEQ) and Cmax(NEQ), are included 
in the Results summary (Figure 18). They are slightly 
different from the Edge Variance results, most likely 
because NPS(f), is used. (The Edge Variance calculation 
assumes constant NPS, i.e., white noise.)  

 

 

Figure 18. Information capacity C from the two methods:  
Edge variance and Noise image. 

Ideal Observer SNR (SNRi) 
SNRi (Figure 20) is a measure of the detectability of 

objects. It was introduced and rigorously correlated with 
Bayesian detection statistics in the 1996 ICRU Report 54 
[17], then reintroduced to the imaging community Paul 
Kane [23] and Orit Skorka and Paul Kane [22]. The two-
dimensional equation in [22] gives the best results. 

     𝑆𝑁𝑅𝑖2 = ∬ (
|𝐺(𝜈𝑥 , 𝜈𝑦)|

2
 𝑆𝐹𝑅2(𝜈𝑥 , 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦)
) 𝑑𝜈𝑥  𝑑𝜈𝑦

=  ∬|𝐺(𝜈𝑥 , 𝜈𝑦)|
2
 𝐾(𝜈𝑥 , 𝜈𝑦) 𝑑𝜈𝑥  𝑑𝜈𝑦          (17) 

where 𝐺(𝜈𝑥 , 𝜈𝑦) is the two-dimensional Fourier 

transform of the rectangular object to be detected, g(x,y), 
and SFR(ν) and NPS(ν) are defined in one dimension for 

spatial frequency 𝜈 = √𝜈𝑥
2 + 𝜈𝑦

2, which has units of 

Cycles/Pixel. 
Objects to be analyzed are typically rectangles of 

dimensions w × kw, where k = 1 for a square or 4 for a 
1:4 aspect ratio rectangle. Amplitude, VP−P, is typically 
taken from the chart (typically with a 4:1 contrast 
ratio). The equation for the rectangular object (Figure 
19) is 

𝑔(𝑥, 𝑦) = 𝑉𝑃−𝑃 ⋅ rect (
𝑥

𝑤
) ⋅ rect (

𝑦

𝑘𝑤
)            (18) 

where rect(x/w) = 1 for -w/2 < x < w/2; 0 otherwise  
 

 

Figure 19. rect function 

         𝐺(𝜈𝑥 , 𝜈𝑦) = 𝑘𝑤2 𝑉𝑃−𝑃

sin(𝜋𝑤𝜈𝑥)

𝜋𝑤𝜈𝑥
 
sin(𝜋𝑘𝑤𝜈𝑦)

𝜋𝑘𝑤𝜈𝑦

=  𝑉𝑃−𝑃  𝐺𝑟𝑒𝑐𝑡(𝜈𝑥 , 𝜈𝑦)                                       (19) 

where 𝐺𝑟𝑒𝑐𝑡 = 𝑤 sinc(𝜔𝑤 2⁄ ) = 𝑤 sinc(𝜋𝑤𝑣) is the 
Fourier transform of rect(x/w) for frequency v. Note that 
Grect has units of 1/v2, and since v has units of 
cycles/pixel, G(vx, vy) has units of pixels2. 

SNRi2 is calculated numerically by creating a two-
dimensional array of frequencies (0 to 0.5 c/p in 51 
steps) with νx on the x-axis and νy on the y-axis, filled 

with frequency 𝜈 = √𝜈𝑥
2 + 𝜈𝑦

2. These frequencies are 

used to create a 2D array that can be numerically 
summed [23].  

𝑆𝑁𝑅𝑖2 = Δ𝜈𝑥  Δ𝜈𝑦  ∑ ∑
𝑆𝐹𝑅2(𝑖, 𝑗) 𝐺2(𝑖, 𝑗)

𝑁𝑃𝑆(𝑖, 𝑗)
    (20)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1
  

 

Figure 20. SNRi for a sharp, low-noise (ISO 100) image 

Note that like C4, 𝑆𝑁𝑅𝑖 is strongly affected by expo-
sure and chart contrast. But unlike C4, SNRi is also affe-
cted by Image Signal Processing (ISP; electronic filtering 
such as sharpening or lowpass filtering).  

Although SNRi is a powerful measurement, we also 
give weight to a closely related measurement, Edge SNRi, 
for determining the performance of ISP applied before 
sending the image to the Object Recognition/Machine 
Vision/AI block). 

As a result of Parseval’s theorem, which states that 
the integrals of a Fourier transform pair, r(x) and R(ω), 
must be equal, 

∫ |𝑟(𝑥)|2𝑑𝑥 
∞

−∞

=  
1

2𝜋
∫ |𝑅(𝜔)|2𝑑𝜔 = ∫ |𝑅(2𝜋𝑓)|2𝑑𝑓 

∞

−∞

∞

−∞
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 (21) 

SNRI2 is equivalent to the total (integrated) noise-
whitened Signal/Noise energy of the object in the spatial 
domain.  

SNRi displayed in dB per pixel squared 
Because standard SNRi plots can be difficult to read 

(in part because SNRi has units of pixels2), SNRi can also 
be plotted in dB per pixel2 (Figure 21). It is somewhat 
easier to read than the standard SNRi image, but it is 
more of a relative measurement— useful for evaluating 
changes from image processing. 

 

Figure 21. SNRi per pixel2 for a sharp, low-noise (ISO 100) image 

Object visibility and SNRi   
One of the uses of SNRi measurements is to predict 

object visibility for small, low contrast squares or rec-
tangles. The SNRi prediction begs for visual 
confirmation.  

We have developed a display that does this with real 
slanted-edge image data. Despite the trickery, the data is 
directly from the acquired image. 

We show two images, below: Figure 22 for a rela-
tively low-noise image and Figure 23 for a noisy image 
(both from a camera with Micro Four-Thirds sensors, at 
ISO 100 and 12800). The sides of the squares are w = 1, 
2, 3, 4, 7, 10, 14, and 20 pixels. The original chart has a 
4:1 contrast ratio (light/dark = 4), equivalent to a 
Michelson contrast 𝐶𝑀𝑖𝑐ℎ = (light-dark)/(light+dark) =
0.6. The outer squares have CMich = 0.6. The middle and 
inner squares have CMich = 0.3 and 0.15, respectively. 

How to use these images  

The yellow numbers are the square widths in pixels. 
The outer (left and right) patches correspond to the 
SNRi curves for the ISO 12233-standard 4:1 contrast 
ratio, where, according to the Rose model [16], SNRi of 5 
(14 dB) should correspond to the threshold of visibility.  

 

Figure 22. Low noise image, ISO 100. 

 

Figure 23. Noisy image, ISO 12800. 

The SNRi curve in Figure 24 is for the noisy ISO 
12800 image in Figure 23, above. The w = 1 squares are 
invisible; the w = 2 and 3 squares are only marginally 
visible, and w = 4 squares are clearly visible. In Figure 
23, the Y (luminance) channel SNRi at w = 2 is 15 dB; it 
reaches 19 dB for w = 3; a little above the expectation 
that the threshold of visibility is around 14 dB. 

https://www.semanticscholar.org/paper/Signal-to-noise-optimization-of-medical-imaging-Cunningham-Shaw/d478a81c1af794e8097b5a3b3cf903b2f5af0f2b
https://www.imatest.com/support/docs/23-1/shannon-slanted-edges/#links
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Figure 24. SNRi for noisy ISO 12800 image (above) 

Only original pixels were used in these images of 
squares, but we used some “smoke and mirrors” tricks 
to make squares that have the same blur as the original 
image  

How the squares were made 

1. Expand the image if needed to make room for all the squares by 

adding mirrored versions of image to the sides, top, and bottom of the 

image.  

2. Create a (horizontal) mirror of the full image. This is the “mirror” 

part. 

3. Create a mask consisting of ideal w × w squares, with 0 in the 

background, 1 in the squares, and sharp sides. 

4. Blur the squares with the MATLAB filter2 function. This is the 

“smoke” part. Determining the blur kernel was challenging. We 

found that we couldn’t get good results by just using the 1D Line 

Spread function (LSF) in 2D. A more complex transformation was 

required.  

5. Linearize the two images (remove the gamma encoding). 

6. Combine them using the mask, using the original image where the 

mask = 0, the mirrored image where the mask = 1, and blending them 

elsewhere. 

7. Reapply the gamma encoding. 

Edge Signal-to-Noise Ratio (Edge SNRi) 
Edge SNRi is a measure of the detectability of the 

edges of objects. It is similar to SNRi, described above 
and in [17, 22, 23].  

       𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2

= ∬ (
 |𝐻(𝜈𝑥 , 𝜈𝑦)|

2
 𝑆𝐹𝑅2(𝜈𝑥 , 𝜈𝑦)

𝑁𝑃𝑆(𝜈𝑥 , 𝜈𝑦)
) 𝑑𝜈𝑥  𝑑𝜈𝑦

= ∬|𝐻(𝜈𝑥 , 𝜈𝑦)|
2
 𝐾(𝜈𝑥 , 𝜈𝑦) 𝑑𝜈𝑥  𝑑𝜈𝑦             (22) 

H(νx,νy) is the Fourier transform of the edges (the 
gradient) of the object to be detected.  

For a rectangle of dimensions w × kw, the function is 
the derivative, h(x, y), of the rectangle, g(x, y), that 
describes the object. 

VP−P is typically obtained from a chart with a 4:1 
contrast ratio. SNRi and Edge SNRi are both proportional 
to the Michelson contrast of the chart ((n-1)/(n+1)), and 
can be scaled for different contrast levels.    

ℎ(𝑥, 𝑦) = 𝑉𝑃−𝑃 ∙ 𝑑 [rect (
𝑥

𝑤
)] /𝑑𝑥 ∙ 𝑑 [rect (

𝑦

𝑘𝑤
)] /𝑑𝑦 

=  𝑉𝑃−𝑃 ∙ 𝐼𝐼 (
𝑥

𝑤
) ∙ 𝐼𝐼 (

𝑦

𝑘𝑤
)                            (23) 

where II(x/w) = d(rect(x/w)/dx (Figure 25) is called 
the “odd impulse pair,” consisting of a pair of Dirac delta 
functions of opposite polarity separated by the object 
width w.  

 

Figure 25. Odd impulse pair 

H(νx,νy) is the Fourier transform of the edges of the 
object to be detected, equivalent to 2πv G(vx,vy) for 
frequency v. Expressed in two dimensions, 

𝐻(𝜈𝑥 , 𝜈𝑦) = 2 𝑉𝑃−𝑃 sin(𝜋𝑤𝜈𝑥) sin(𝜋𝑘𝑤𝜈𝑦)     (24) 

Edge SNRi2 (Figure 26) is numerically calculated 
using a similar equation to SNRi2. 

𝐸𝑑𝑔𝑒 𝑆𝑁𝑅𝑖2 = Δ𝜈𝑥 Δ𝜈𝑦  ∑ ∑
𝑆𝐹𝑅2(𝑖, 𝑗) 𝐻2(𝑖, 𝑗)

𝑁𝑃𝑆(𝑖, 𝑗)

𝑁𝑦

𝑗=1

𝑁𝑥

𝑖=1
 

 (25) 

 

Figure 26. Edge SNRi for a sharp, low-noise (ISO 100) image 

SNRi is affected by signal processing (sharpening, 
etc.), making it useful for evaluating filtering (ISP 
filtering applied prior to the object recognition/machine 
learning/AI blocks).  

 

Line Spread Function (LSF) doublet results 

Edge SNRi is based on pairs of Line Spread Functions 
of opposite polarity called LSF doublets, r(x) (Figure 27), 
which are used in several key calculations. 
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            𝑟(𝑥) = (𝐿𝑆𝐹(𝑥) − 𝐿𝑆𝐹(𝑥 − 𝑤))/𝜎    and 

𝑅(𝑣) =
𝐻(𝑣) 𝑀𝑇𝐹(𝑣)

√𝑁𝑃𝑆(𝑣)
                         (26) 

  

Figure 27. LSF doublets. w = 5.0 pixels (left), w = 0.5 pixels (right) 
Amplitude for w = 0.5 is 1/3 as large as for w = 5.0 pixels. 

As spacing w decreases, the peaks are shifted more 
from their original locations and amplitude decreases.  

As a result of Parseval’s theorem, Edge SNRI2, which 
is defined in frequency domain, is equivalent to the total 
(integrated) Line Spread Function doublet energy 
divided by Noise energy in the spatial domain. 

Effects of Image Signal Processing (ISP) 
 
Several recent papers [24-26] state that appropriate 

image processing prior to Object Recognition, Machine 
Vision or Artificial Intelligence algorithms may improve 
the performance (accuracy, speed, and power consump-
tion) of AI systems. Because information capacity is 
independent of Image Signal Processing— at least with 
ISP that does not remove information, such as Unsharp 
Mask (USM) sharpening— it provides little guidance 
about filter design for optimal image processing. 

SNRi has some drawbacks for predicting the quality 
object detection. It indicates how well the presence of an 
object can be detected, but it says nothing about its 
shape. Shape detection is dependent on the edge detec-
tion, which is quantified by Edge SNRi. And there is the 
problem of object color. What If the object has the same 
color as the background? (Think of gray cars in front of 
gray concrete.) In such cases it is the edge that matters. 
For this reason, Edge SNRi should be given comparable 
weight to SNRi when designing filters. 

Image signal processing algorithms can be designed 
to optimize a specific task, for example, the detection of 
an object of a specific size, often a small rectangle, or the 
detection of its edges. In practice, ISP needs to perform a 
multitude of tasks: detecting objects and edges greater 
than a minimum size and limiting interference from 
neighboring objects. 

The results in the table below were obtained starting 
with an unsharpened image, applying various combina-
tions of sharpening (USM with Radius R, Amount A) and 

lowpass filtering (blurring) to w × 4w rectangles (w in 
pixels). 

Table 2. Results for various filters for a 24 MP Micro Four-

Thirds camera, 1 inch sensor, ISO 100, w × 4w rectangle. 

Filter 
(ISO 
100) 

MTF50 
C/P 

Edge 
SNRi 
w = 1 

Edge 
SNRi 
lg w 

SNRi 
dB/Pxl 
w = 1 

SNRi 
dB/Pxl 
w = 5 

Cmax 
(NEQ) 

None 0.210 9.07 11.7 25.6 28.6 3.87 

σ=0.8 
LPF 

0.149 9.52 13.2 27.7 31.2 3.65 

USM 
R2A3 

0.377 3.31 6.51 20.5 22.7 3.35 

USM 
R2A3, 
σ=0.8 

0.276 6.41 9.23 22.9 25.0 3.6 

USM 
R1A2 
σ=0.7 

0.271 9.80 12.2 25.9 28.7 3.9 

Table 3. Results for various filters for a 24 MP Micro Four-

Thirds camera, ISO 800, w × 4w rectangle. 

Filter 
(ISO 
800) 

MTF50 
C/P 

Edge 
SNRi 
w = 1 

Edge 
SNRi 
lg w 

SNRi 
dB/Pxl 
w = 1 

SNRi 
dB/Pxl 
w = 5 

Cmax 
(NEQ) 

None 0.211 0.41 3.35 17.7 22.7 2.75 

σ=0.8 
LPF 

0.149 2.28 5.70 20.2 25.2 2.67 

USM 
R2A3 

0.369 -2.91 0.73 15.2 18.9 2.39 

USM 
R2A3, 
σ=0.8 

0.292 1.25 4.05 17.9 23.0 2.62 

USM 
R1A2 
σ=0.7 

0.262 1.68 4.29 18.4 23.1 2.77 

 
We can make several observations from these results.  
• A pure lowpass filter (LPF σ = 0.8) improves 

Edge SNRi and SNRi. 
• Pure sharpening (R2A3) degrades both metrics. 

This shows that strong oversharpening, which is 
often used boost summary metrics like MTF50, 
can seriously degrade performance. It can be 
identified by strong edge “halos” and SFR peaks 
(Figure 13). 

• Sharpening (USM R2A3) + LPF (σ = 0.8) 
improves Edge SNRi and SNRi, though less than 
the pure LPF. 

• The approximation to the matched filter in Figure 
30, USM R1A2 + LPF σ = 0.7 is slightly better 
than R2A3 σ=0.8, though not quite as good as the 
pure LPF. 

 
The bottom line is that appropriate lowpass filtering 

improves performance, and some sharpening, when 
combined with LPF, may also improve performance. Of 
course, these are just a few of many filter combinations 
of potential interest. And they are for one specific 
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camera at two ISO speeds (Exposure Indices 100 and 
800).  

And as we indicated, filters should be designed for 
more than a single task. The pure LPF performs well in 
the absence of interfering objects. Some sharpening may 
reduce the effects of this interference, and as we have 
shown, sharpening, when combined with lowpass 
filtering, causes little performance degradation. 

Matched filters 
A matched filter [27] (sometimes called a “noise-whi-

tened matched filter”) is a custom filter that maximizes 
the SNR, i.e., the detection probability, for 

• a system with a specific response, and 
• a specific object (or edge). 

Matched filters were originally developed for impulse 
detection in radar (a single airplane at a large distance). 
They are discussed in ICRU Report 54 [17], but were 
mostly ignored outside medical imaging because they 
have little relevance to human vision. That has changed 
with the advent of machine vision and artificial intelli-
gence.  

For an impulse (a δ-function, i.e., the airplane), the 
matched filter transfer function is identical to the noise-
whitened system response (where “noise whitening” is 

division by 𝑁𝑉(𝑓), or equivalently, √𝑁𝑃𝑆(𝑓) ). 

 ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓)  = 𝑆𝐹𝑅(𝑓)/(√𝑁𝑃𝑆(𝑓)) = √𝐾(𝑓)      (26) 

A matched filter, ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓), which optimizes SNRi 
or Edge SNRi, has the same frequency spectrum as the 
system, including the edge or object. For edge or object 
detection,  

ℱ𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓)  =  
|𝑃(𝑓)| 𝑆𝐹𝑅(𝑓) 

√𝑁𝑃𝑆(𝑓)
= |𝑃(𝑓)|√𝑆(𝑓)    (27) 

P(f) is equal to G(f) (the Fourier transform of the 
object) for SNRi or H(f) (the Fourier transform of the 
edge) for Edge SNRi.  

Figures 28 and 29 show the transfer functions for 
matched filters for SNRi or Edge SNRi. The Edge SNRi 
matched filter and the USM+LPF Image Processing filter 
designed to approximate it (Figure 30) have response 
peaks around 0.20 Cycles/Pixel.  

 

  

Figure 28. Matched filter for optimum object: Lowpass (LPF). 

  

Figure 29. Matched filter for optimum edge detection. Can be 
approximated with sharpening + LPF. 

Matched filters are optimized for a single task: detec-
ting an object or edge of a certain size (by maximizing 
SNRi or Edge SNRi). But real-world filters must perform 
a multitude of tasks: they must detect objects and edges 
of varying sizes, contrasts, and colors. This calls for 
tradeoffs, which are not severe. Since large objects are 
usually detected well, filters should be designed to 
perform well with small objects or edges.  

Figure 30 shows the filter transfer function for a 
gaussian lowpass filter with σ = 0.7, combined with a 
USM filter with Radius = 1 and Amount = 2 (R1A2). 

 

 

Figure 30. Filter transfer function for σ = 0.7, R1A2. A first approximation to a 
tradeoff between optimizing SNRi and Edge SNRi. 

Edge Matched Filter 
(Sharpening + Lowpass) 

optimizes Edge SNRi w = 2 
w = 1  

Object Matched Filter 
(Lowpass) optimizes 

Object SNRi 

w = 2 
w = 1  

https://www.icru.org/report/medical-imaging-the-assessment-of-image-quality-report-54/
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This transfer function approximates the edge 
matched filter in Figure 28. The matched filter can be 
realized by combining a standard lowpass filter (Bessel, 
Butterworth, etc.) with standard sharpening or unsharp 
masking (USM). Details for realizing this filter are 
beyond the scope of this paper. 

Exposure and pixel level 
Most of the performance metrics discussed in this 

paper, including NEQ(f), CNEQ, SNRi, and Edge SNRi, are 
sensitive to exposure, increasing as exposure increases. 
For this reason, we need to maintain consistent expo-
sure when acquiring images, especially when comparing 
different cameras. Linearized Digital Numbers (DNs or 
pixel levels) should be similar. A reasonable level will 
need to be established as we develop best practices for 
measurement. 

Low light measurements are, of course, important, 
especially for video systems, where the maximum expo-
sure time is limited, making it necessary to increase the 
analog gain (at the expense of SNR) at low light levels. It 
may be fruitful to measure C4 (rather than Cmax) as a 
function of exposure, especially at low light. We are still 
developing best practices for taking advantage of the 
new metrics. 

Summary 
The basic premise of this work is that traditional 

sharpness and noise metrics are insufficient to directly 
predict object and edge detection performance, and 
hence are poor predictors of Machine Vision/Artificial 
Intelligence system performance. And they provide no 
insight into how to design image processing for optimum 
performance. The new metrics and techniques described 
here are intended to accomplish this. They include 

 
1. Two methods for measuring camera noise from 

slanted edges— spatially dependent noise, σs(x), 
from the edge variance method, and the noise 
power spectrum, NPS(f), from the noise image 
method.  

2. Techniques for calculating camera information 
capacity from the average signal and noise power 
from both methods. 

3. A set of metrics for quantifying object and edge 
detection performance, primarily derived from 
the noise image method, including NPS(f), NEQ(f), 
CNEQ, SNRi, and Edge SNRi. 

4. A technique for designing matched filters for 
optimizing detection performance, based on a 
tradeoff between maximizing SNRi and Edge SNRi 
and minimizing interference from nearby objects. 

5. Note that the equations for the information met-
rics and matched filters all contain the equation 

kernel, 𝐾(𝑓) = 𝑆𝐹𝑅2(𝑓)/𝑁𝑃𝑆(𝑓).  This unifies 
the results from the noise image method. 

 
We need to verify that these calculations and design 

techniques work as intended— that they correlate well 
with MV/AI system performance. 

 
The key concepts presented in this paper are 
 
1. Information capacity, which combines sharp-

ness, noise, contrast loss, is a fundamental 
figure merit for imaging systems that is appro-
priate for selecting cameras. 

2. Both spatial and frequency-dependent noise can 
be measured from slanted-edge regions at the 
same location, in the presence of the signal. Co-
locating signal and noise measurements makes 
the measurements convenient, robust, and 
reduces the likelihood of error.  

3. A noise peak in σs(x) allows bilateral-filtered 
images to be distinguished from uniformly-
processed images for “black box” cameras with 
unknown image processing, so that the opti-
mum noise calculation can be selected. 

4. Information capacity, Cn, measured from n:1 
contrast slanted edges (typically 4:1), is 
sensitive to chart contrast and exposure, but it 
can be extrapolated to calculate a stable maxi-
mum information capacity, Cmax. 

 
Camera information capacity and related information 

metrics are still novel in the imaging industry. Significant 
effort will be required to make them better known. But 
the units for C— information bits per pixel (or total 
image) for a specified ISO speed or exposure— are 
intuitive and easy to understand. 

We would like to see information capacity become a 
standard specification for cameras intended for machine 
vision. And we would like to see better use made of edge 
and object detection metrics, SNRi and Edge SNRi. Came-
ras should be characterized with measurements made 
over a range of ISO speeds (exposure indices) and/or 
light (lux) levels. We are optimistic that this will lead to 
improved performance and reduced energy use [28]. 

Future work 
• Collaborate with partners in academia and in-

dustry to correlate camera information capacity, 
C, and object and edge detection metrics, SNRi 
and Edge SNRi, with the performance of Machine 
Vision and Artificial Intelligence systems. 

• Verify the validity of the new Edge SNRi metric, 
which is similar to SNRi, but has not has not been 
subjected to the same rigorous verification [17, 
23]— correlating it with Bayesian statistics.  
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• Become familiar with the measured numbers for 
the metrics (e.g., what are “good” values of SNRi 
or Edge SNRi?) Transform units from native sen-
sor native units of cycles/pixel to practical units 
like cycles/angle or cycles per object distance, as 
needed. 

• Determine best practices for measuring the 
information capacity of High Dynamic Range 
(HDR) sensors. 

• Determine best practices for designing the 
output (matched) filter: How much weight 
should SNRi and Edge SNRi be given? What about 
sharpening to limit external interference? 

• Work on the ISO 23654 standard, Photography - 
Digital cameras - image Information Metrics, 
overseen by ISO TC42.  

• Explore the correlation between C with the 
subjective visual appearance of a variety of 
images, without and with additional image 
processing.  
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