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Abstract

We present a comprehensive framework for conveniently measu-
ring camera information capacity and related performance metrics
from the widely used slanted-edge (e-SFR) test pattern.

The goal of this work is to develop a set of image quality metrics
that can predict the performance of Machine Vision (MV) and
Artificial Intelligence (A1) systems, assist with camera selection,
and use for designing electronic filters to optimize system perfor-
mance. The new methods go far beyond the standard approach of
estimating system performance based on sharpness and noise (or
Signal-to-Noise Ratio) — which often involves more art than
science.

Metrics include Noise Power Spectrum (NPS), Noise Equivalent
Quanta (NEQ), and two metrics that quantify the detectability of
objects and edges: Independent Observer Signal-to-Noise Ratio,
SNRi, and Edge SNRi. We show how to use these metrics to design
electronic filters that optimize object and edge detection
performance.

The new measurements can be used to solve several problems,
including finding a camera that meets performance requirements
with a minimum number of pixels— important because fewer pixels
mean faster processing and lower energy consumption as well as
lower cost.

Introduction
We introduce the concept of information capacity,
which is calculated from signal power, noise power, and
bandwidth, then we describe an enhancement to the ISO
12233 slanted-edge e-SFR algorithm that we implemen-
ted to improve measurement accuracy and consistency.
Next, we describe the two methods for calculating
noise power (and hence information capacity) from the
familiar slanted-edge (e-SFR) test pattern, specified by
the IS0 12233:2014/2017 /2023 standard [1].
1. The edge variance method, which calculates spatially
dependent noise power, o5°(x), and
2. The noise image method, which calculates frequency-
dependent noise (noise power spectrum, NPS(f)), as well
as several additional metrics, including noise equivalent
quanta, NEQ, and metrics for object and edge detection,
SNRi, and Edge SNRi.
We describe how to use these metrics to design
electronic filters, called matched filters, for optimizing
object and edge detection performance.

Information capacity

Camera information capacity, based on Claude
Shannon’s ground-breaking work on information theory
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[2-3] has long held promise as a figure of merit for a
variety of imaging systems. It has been discussed in
several technical papers [4-7] and in two textbooks [8-
9], but it has failed to gain widespread adoption in the
imaging industry, primarily because it was difficult to
measure

In electronic communications systems, channel
(information) capacity, C, defines the maximum rate in
bits per second that information can be transmitted
through a channel without error. For additive white
gaussian noise, it is given by the deceptively simple
Shannon-Hartley equation.

S w S
C=W10g2(1+ﬁ)=folog2(1+%> (1)

It is quite logical to apply this definition to imaging
systems, where C has units of bits/pixel. But signal
power, S(f), and noise power, N(f), must be measured
with care, which was traditionally difficult and error-
prone because S(f) and N(f) had to be measured at
separate locations. To make matters worse, most JPEG
images from consumer cameras usually have nonuni-
form image processing (bilateral filtering) [10] that
sharpens images near contrasty features such as edges
(boosting high frequencies) but reduces noise elsewhere
(lowpass filtering). This increases the measured
information capacity while removing information.

Because nonuniform image processing is so
commonly applied, it is highly desirable to measure
signal and noise at the same location in the image, i.e., to
measure noise in the presence of signal. This is what the
new slanted-edge methods accomplish.

The slanted-edge measurement
For context, we briefly review the slanted-edge

algorithm.

1. The image should be well-exposed,
avoiding the dark “toe” and light
“shoulder” response regions.

2. Linearize the image by applying the
inverse of the encoding gamma curve.

3. Find the center of the transition
between the light and dark regions for
each horizontal scan line, y; (x).

4. Fit a polynomial curve to the center
locations.
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5. Add each appropriately shifted scan line to one of four
bins, depending on the location of the curve relative to the
scan line. [The improvement described below interpolates
each scan line, increasing the pixel count from N to 2N-1.]

6. Combine the mean signal in each bin to obtain the 4%
oversampled averaged edge for L scan lines, us(x), illustrated
in the upper plot of Figure 7.

1—l-1
ts(X) = Zzl=oy’(x_6) (2)

7. Calculate Spatial Frequency Response, SFR(f) (synony-
mous with MTF(f)), by differentiating the averaged edge,
windowing it, then taking the magnitude of the Fourier
transform, normalized to 1 (100%) at zero frequency.
Illustrated in the lower plot of Figure 7.

Improvement to the ISO 12233 slanted-edge
(e-SFR) calculation

Nomenclature— Spatial Frequency Response (SFR)
and Modulation Transfer Function (MTF) are used syno-
nymously in the literature, but SFR is generally pre-
ferred in recent literature [1]. We use SFR here, although
some plots are labeled MTF (which is more familiar) and
we keep summary metrics such as MTF50, the spatial
frequency where SFR drops to 50% of its zero-frequency
value.

The slanted edge is not the only pattern for calcula-
ting SFR. Prior to the improvement described here, the
Siemens star produced smoother, more consistent
results, but required far more space and computation
time. Slanted edges, by comparison, are small and fast,
but had somewhat rough response and artifacts that
resemble noise, especially at high frequencies (>0.3
Cycles/Pixel). This made it difficult to measure MTF10—
the spatial frequency where SFR drops to 10% of its
zero-frequency value, roughly equivalent to the Rayleigh
diffraction limit. Figure 1 shows an example for a 12-
megapixel camera with a 1-inch sensor at ISO 1600.

T T T T
1 MTF50 = 0.3425 Cy/Pxl
= 1957 LW/PH NR
RGB) = 0.338 0.343 0.357 Cy/Px|
08 MTF50P = 0.343 C/P = 1960 LW/PH
Undersharpening 6.6%
MTF area PkNorm = 0.341 Cy/Pxl
w 0.6
= Peak MTF = 0.996
= MTF at Nyquist = 0 16
0.4 |
0.2
MTF: Horiz (V-edge) wNR
0 . L \ L
0 02 0.4 0.6 0.8 1

Frequency, Cycles/Pixel
Figure 1. SFR (MTF) for 1 inch sensor camera at ISO 1600:
Current ISO 12233 binning algorithm (uninterpolated).

This anomalous response had little effect on common
SFR summary metrics such as MTF50, which is why they
have been mostly, though not entirely, ignored. But it
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significantly affected the accuracy and consistency of
metrics such as NEQ, to be introduced below, that
depend on K (f) = SFR(f)?/NPS(f).

Figure 2. Interpolation diagram: N to 2N-1 pixel count

The algorithm for the improvement is simple. Before
performing the binning, interpolate the N pixels each
scan line to obtain 2N-1 pixels. In MATLAB, this can be
easily done with the interp2 function. ‘cubic’ interpola-
tion gives good results, but not very different from
‘linear’, which is faster. The polynomial fit equation and
frequency scale are adjusted accordingly. The result is an
impressive improvement in the SFR curve visible in the
smoothing and reduced MTF values above the Nyquist
frequency in Figure 3 compared to Figure 1.
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Figure 3. SFR (MTF) for 1 inch sensor camera at ISO 1600:
New interpolated binning algorithm.

We have seen an improvement in almost every SFR
curve we've observed [11], especially in sharp images
(that have significant energy above fy,,/2 = 0.25 C/P),
and even in motion-blurred images that suffered from
sawtooth artifacts in the Line Spread Function. Slanted-
edge results are much closer to Siemens star results for
uniformly processed images, and it is now possible to
reliably measure MTF10. We will be proposing this
technique to the ISO TC42 committee, which is
responsible for the ISO 12233 standard.

We have already added the new technique to a
variant of SFRMAT5— the free program available from
Burns Digital Imaging [12] that is used as reference code
for ISO 12233 standard. [11] contains more detail about
the new calculation technique.

The Edge Variance method for calculating
noise and information capacity

We will concisely describe the Edge Variance method,
which was introduced in an earlier paper [13].
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A simple addition to the ISO 12233 binning
algorithm described above allows the variance of the
signal, os? (the noise power), to be calculated in addition
to the mean, .

In addition to }; y;(x), calculate the sum of the
squares of each scan line, Y, y?(x). Then,

1 —L-1
o260 =7). i)~ @)
1 L-1 5 1 L-1
=) W -(;). %)
3)
o5°(x) is the noise power, N(x), and os(x) is the noise
amplitude, ,/ N(x) at each position on the oversampled
array— including the edge transition, where noise was
traditionally difficult to measure.

[13] describes a form of quantization noise called
binning noise that is largest near the image transition—
where the Line Spread Function, LSF(x) = dus(x)/dx is
maximum. It is subtracted from ¢,%(x) to improve calcu-
lation accuracy. An unexpected benefit of the improved
e-SFR calculation is that binning noise is only half as

large as in the original calculation. It has only a minor
effect on computation accuracy.

2

Signal power, §

The peak-to-peak signal amplitude, Vp.p, (Figure 4) at
low spatial frequencies is the measured difference
between the means of the light and dark regions of the
linearized slanted edge, us(x).

Vp—p = Ay, = UsLight — Uspark = Vinax—Vimin %)
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Figure 4. Slanted-edge amplitudes (voltages, V)

Since our intent is to calculate the information (or
channel) capacity, which is the maximum information
for the Vpp signal, we assume a signal distribution that
maximizes information: the uniform distribution. The
variance of the uniformly-distributed signal, which is the
average signal power at low spatial frequencies, is

— — 2 —_ 12
0-]2/ - S"—Vg (0) - (MsLight - MsDark) /12 = VP—P/]‘Z
(5)
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The Shannon-Hartley equation uses the average
frequency-dependent signal power, Savg(f).

Savg(F) = (Vo_p MTF(£))*/12 6)

Signal power, S, is proportional to the square of the
chart’s Michelson contrast,
Cymich = (#sLight - #sDark)/(ﬂsLight + Uspark), for a
properly linearized image, which is easy to obtain if the
camera does not approach saturation at low or high
pixel levels. Note that Sy < 1 for linearized images
normalized to 1.

Noise power, N

Noise power, N, has the same units as signal power, S;
hence S/N is dimensionless.

For nonuniformly-processed images, noise near the
edge transition— rather than noise measured in flat
patches— dominates system performance. The transition
region is defined by the Line Spread Function, LSF (x) =
dus(x)/dx, shown in Figure 5.
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Figure 5. Line Spread Function, LSF = dus(x)/dx for the strongly
sharpened bilateral-filtered image in the example below.

The value of N to be entered into the Shannon-Hart-
ley equation depends on the detected image processing
type. Two distinct image processing types cover most
cases of interest.

Uniformly or minimally-processed images, often
TIFFs converted from raw files (raw—TIFF). Most
cameras to be evaluated for Machine Vision/Artificial
Intelligence are in this category. They can be identified
by the lack of a strong noise peak near the transition.
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Figure 6. Noise amplitude as(x) for uniformly processed image (TIFF from
raw; no sharpening or noise reduction). ISO 100. The bold black curve is the
Y-channel, smoothed with a 1.25-pixel kernel before 4% oversampling.

Since noise can be a rough function of x (Figure 6), a
moderately large region size is used for calculating the
value of N for the Shannon-Hartley equation. Noise is
averaged over a region defined as the edge center
+ 1.5xPW20, where PW20 is the width of the region
where the Line Spread function LSF (x) = dus(x)/dx =
0.20 LSE,, -

Nyniform = mean(asz (X))
for x = edge center + 1.5 X PW20. (7)

Bilateral-filtered images [10] include most JPEG
images from consumer cameras. Bilateral filters sharpen
images near contrasty features such as edges, but blur
them (to reduce noise) elsewhere. This causes a distinct
noise peak, shown in Figure 7, close to the edge transit-
ion, which can dominate camera performance (because
SFR is also measured at the transition). We have long
known about the noise peak, but we previously had no
convenient way to observe it.

LX5_Star_SG__10.7mm_f4_ISO100_s1-4_1010173.JPG
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Figure 7. Noise amplitude os(x) for bilateral-filtered image (sharpened
near edges; noise-reduced elsewhere) from a camera JPEG. 1SO 100.

Noise power, Npear, is the square of the noise ampli-
tude at the peak, smoothed slightly (with a rectangular
kernel of length PW20/2) to remove jaggedness. This is
a somewhat arbitrary choice, but it produces reasonably
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consistent results. Npeak also works with minimally pro-
cessed images, but results are less consistent than
Nuniform.

The noise calculation method (Nuniform 0T Npeak) may
be selected manually or automatically, based on the
presence of a detected peak near the transition. Some
additional considerations:

¢ Noise is not exactly white, but is close enough to
yield good results. This assumption is supported by
experimental results in [22]. The Noise Image
method, below, calculates the noise spectrum.

e Noise power is larger on the lighter side of the edge
due to photon shot noise, which increases with the
number of photons reaching the sensor pixels. The
mean, Nuniform, includes both sides.

e For linear sensors, noise power increases with
exposure, following the function N(V) = ko + k,V,
where k7 is the coefficient for photon shot noise,
derived in [13].

e Anoise peak may be visible on strongly (but uni-
formly) sharpened images. The peak is usually
weaker than for bilateral-filtered images. Nuniform is
preferred in this case. Camera JPEG images are
almost always bilateral-filtered.

e Npeakis intended to provide a reasonable estimate
of information capacity for bilateral-filtered ima-
ges, which includes most JPEGs from cameras. It is
less accurate than measurements from minimally
processed images, but it can be useful for estima-
ting the performance of “black box” cameras, which
have unknown image processing.

Bandwidth, W

Bandwidth, W, is always 0.5 cycles/pixel (the Nyquist
frequency, fivyg). Signals above Nyquist do not contribute
to the information content; they can reduce it by causing
aliasing— spurious low frequency signals like Moiré that
can interfere with the actual image. Frequency depen-
dence comes from SFR(f), which is a component of

Savg(f).

Combining S, N, and W to obtain information
capacity, C

Once signal power, S, and noise power, N (either
Nuniform or Npeak, as appropriate), have been obtained, we
can calculate information capacity, C.

05
C=j log2(1 +Sa%(f))df

0.5/Af S "
= Z log, (1 +7“”g§; f)>Af (8)
i=0
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Edge variance results: Edge, SFR, C

Figure 8 shows the Edge and SFR response as well as
calculated information capacity values (Cs and Cmax, to be
introduced below). Similar plots in [13], made with the
old e-SFR calculation (without interpolation), are
rougher, as expected.
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Figure 8. Edge and SFR (MTF) plot for compact digital camera for an
unsharpened TIFF from raw. Upper: Mean edge ps(x). Lower: SFR(f).
C.4 is the Shannon information capacity for a 4:1 contrast ratio edge.

SFR(f), which is sometimes confused with bandwidth,
can take a large bite out of C, especially since it is
squared in the above equation. [13] contains an explana-
tion of how increasing SFR can lead to significant
aliasing-related artifacts, such as Moiré, that degrade
performance.

Measurement technique

Test chart edge contrast should be between 2:1 and
10:1, with 4:1 (specified in the ISO 12233 e-SFR stan-
dard) recommended. Edge contrast greater than 10:1
increases the likelihood of nonlinear operation (satura-
tion or clipping), which will compromise the results.

Images should be well-exposed because saturation or
clipping can cause misleading results.

The camera should be well-focused. Sturdy camera
support should be employed.

Although results are relatively insensitive to ROI
selection, some care must be taken to obtain good
consistency. ROIs should be reasonably large; at least
30x60 pixels is recommended. If possible, the edge
should be centered in the selected region, and there
should a reasonable amount of “breathing room” on the
sides.
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Additional assumptions

A key assumption is that the camera’s dynamic range
(the range of tones that can be reproduced with good
contrast and Signal-to-Noise Ratio (SNR)) is sufficient
for the intended task. Most modern image sensors have
dynamic ranges greater than 60dB (1000:1); high dyna-
mic range (HDR) sensors have 120 dB or more. The
majority of scenes in pictorial, medical, or robotic (but
not automotive) imaging have tonal ranges under 60 dB.
Lens flare (stray light) typically limits practical camera
dynamic range to under 100 dB, which can impact auto-
motive night driving by fogging important dark to mid-
dle tones. If there are concerns about dynamic range, we
strongly recommend measuring it with a transmissive
chart.

Other assumptions: sensor nonuniformities (fixed-
pattern noise, also called PRNU (Photo Response
Nonuniformity) are included in noise measurements.
Tonal response is well-behaved (typically following a
gamma curve, except for the extreme highlights and
shadows). Stray (flare) light is not too severe.

Because the measured value of C is closely tied to the
n:1 chart contrast ratio, where n < 10 to minimize satura-
tion or clipping, we specify n when C'is reported, e.g., C4
for charts with a 4:1 contrast ratio.

Sensitivity to exposure

Because both noise power, N, and amplitude range,
AV, increase with exposure, Csis a strong function of
exposure, as illustrated in Figure 8.

Consistent exposure can be difficult to achieve with
autoexposure consumer cameras because their JPEG
output files often have “shoulders” in their tonal
response (regions of reduced highlight contrast
intended to improve pictorial quality by minimizing
saturated (“burnt out”) highlights).

Implementing a shoulder requires extra headroom,
i.e, a degree of underexposure, which can vary for diffe-
rent camera models. Since autoexposure is optimized for
JPEG output, minimally processed files, typically TIFFs
converted from raw with simple gamma curves
(raw—TIFF), often appear to be underexposed.

Maximum information capacity Cn.x — a more
stable metric than C;

Because the strong exposure-dependence of C4
(Figure 9) affects its value as a performance metric, we
have developed a new metric for maximum information
capacity, Cmax, that is nearly independent of exposure. It
is obtained in two steps.

Step1: Replace the measured peak-to-peak
amplitude range, Vp.p, with the maximum allowable
value, Vp_p 1nax = 1 (for systems normalized to a
maximum amplitude of 1). This may seem like a
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simplification, but it works well for most cameras.
Referring to the section on Noise Power, N,
Savg () = (Vpp.max MTF())"/12 = MTF(f)?/12
€)]
Step 2: Replace the measured noise power, N, with
Nmean, the mean of N over the range 0 < V< 1 (where 1 is
the maximum allowable normalized signal amplitude V).
The general equation for N for linear image sensors is
NWV)=ko+kV (10)
Equations for ko and k: and an adjustment to Cmax for
bilateral-filtered images (which are less accurate than
for minimally processed images) are derived in [13].
Cmax (Figure 9) is nearly independent of exposure for
minimally or uniformly-processed images with linear
sensors, where noise power, N, is a known function of
signal amplitude, V, but it is only approximate for
imaging systems with bilateral filtering or HDR
(nonlinear) sensors, where noise power N is not a
simple function of V.

Camera 1 (10 MP) Shannon capacity C, & C,_ . vs. Exposure

. from 4:1 Slanted-edges: raw-->TIFF & JPEG

LR °
. e

—_— 04 raw->TIFF |7
+ Cmsx raw->TIFF
wmn Cy JPEG

s G, JPEG

Shannon info cap C, & C_ax (Bits/Pixel)

107 10°
V ean (Proportional to exposure)

Figure 9. C4 and Cpax for minimally processed raw— TIFF and JPEG
images for a 10 MP compact camera.
Cmax s consistent, especially for the raw— TIFF image.

High Dynamic Range (HDR) images

Special care must be taken when calculating Cmax for
HDR sensors, which have several cycles of SNR and noise
as exposure increases [14].

S/N (DN/noise) Temporal & total vs. Log10 (DN) R-channel
shifls: 212 0 DN

Bit depth = 32-bit B&W max=4.29e9
Bayer RAW G{r) Pixel (DN) offset = 168
#fles averaged = 16

102

o' o

SIN (DN/noise) Temporal & total

—O— Temporal |4
O Total

Raf file: 842-843.csv

0 1 2 3 4 5 6
Log,, (Digital Number (DN))

Figure 10. Cyclic response of Signal-to-Noise Ratio for HDR sensor
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Noise N(V) increases monotonically, but jumps at the
discontinuities of the SNR plot (Figure 10), around
Logi0(DN) = 3.6 and 4.8. The noise measurement
depends on the location on the sawtooth curve where
the measurement is made. Because of this and because
each HDR sensor is different, there is no simple equa-
tion, comparable to (10) for calculating Cmax. It will
require a separate measurement and an assumption
about the maximum SNR, perhaps limiting it to the mean
value in the sawtooth region (above Logio(DN) = 3 in
Figure 10). For now, we recommend caution when
calculating Cmax for HDR sensors.

Information capacity results

Table 1 shows three cameras with both raw and JPEG
output that we tested for information capacity as a
function of Exposure Index (ISO speed setting).

Table 1. Cameras used in the tests

1. | Panasonic 2.14 ym pixel pitch. Compact 10.1-

Lumix LX5 | megapixel camera with a Leica f/2 zoom
lens set to f/4.
2. Sony 3.88 pm pixel pitch. 24-megapixel micro
A6000 four-thirds camera
3. | Sony ATRii 4.5 um pixel pitch. A 42-megapixel full-
frame camera with a Backside-
llluminated (BSI) sensor

The image in Figure 11, which was analyzed in [15],
contains a 50:1 contrast Siemens star and four 4:1 con-
trast slanted edges. We used the upper-left slanted edge
for most tests. The average background of the chart is
close to neutral gray (18% reflectance) to ensure a good
exposure.

Figure 11. Typical image (cropped) including Siemens star and slanted-
edges to the left and right of the star.

We captured both JPEG images and raw images, con-
verted by LibRaw to 24-bit sSRGB TIFF (designated as
raw—-TIFF) with minimal processing (no sharpening, no
noise reduction, and simple gamma-encoding). The
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luminance channel (Y = 0.2125XR 4+ 0.7154XG +
0.0721xB) was analyzed. Results with 48-bit Adobe RGB
conversion were similar.

Figure 12 shows (¢ as a function of ISO speed (Expo-
sure Index, which is proportional to analog gain) for
raw—TIFF images (solid lines) and JPEG images (dotted
lines). For the raw—TIFF images, the relationship
between ISO speed and C is similar for all three cameras.

Nuniform was used for the raw—TIFF images; Npeak was
used for the bilateral-filtered JPEGs.

Sh F y C,vs. Exp

Index for three cameras

3 from 4:1 Slanted-edge images: raw—>TIFF & JPEG

Camera 1: 10 Mpxl; 2.14um pitch
—=—— Camera 2. 24 MpxI; 3.88m pitch
== Camera 3: 42 Mpxl; 4.5uzm pitch 3
wese Camera 10 JPEG Noise calc 2 [LSF|

Camera 2: JPEG Noise calc 2 |LSF|
Camera 3: JPEG Noise calc 2 |LSF| |

Shannon information capacity C (Bits/Pixel)

o Lu T R B R
10? 10° 10* 10°
Exposure Index (ISO speed)

Figure 12. Information capacity, C4, from 4:1 slanted-edge images.
Solid lines for raw—TIFF images; Dotted lines for JPEGs.

Cmax has a similar trend to C4, but is higher about 1.6.
[13] contains more detail on the behavior of Cmax.

Color channels

The separate R, G, and B channels tend to have
slightly lower C4 than the Y-channel because the noise in
the separate channels is uncorrelated. Color is discussed
in more detail in [13].

Although this paper has focused on demosaiced
images, the slanted-edge method can also be applied to
raw (undemosaiced) images.
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Effects of sharpening
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Figure 13. Edge/SFR (MTF) plots derived from the same image as
Figure 7, where C4 = 1.93 b/p and Cmax = 3.69 b/p, raw—TIFF, ISO 100
Sharpening Radius = 2; Amount = 2. C4=1.91 b/p; Cmax = 3.7 b/p.

The examples in Figures 8 and 13 (and many others
we ran) show that sharpening has little effect on slan-
ted-edge information capacity, as expected. The image
used for Figure 13 (initially a minimally-processed TIFF)
has been strongly Unsharp Mask (USM) sharpened with
Radius = 2 and Amount = 2 (R2A3). It can be compared
to Figure 8, where C4+ = 1.93 and Cmax = 3.69 b/p. We
observed a similar insensitivity of C to sharpening with
Siemens stars [15].

Total information capacity
The total information capacity, Ctotal, for the entire
image is calculated from
Ciotar = mean(C) X megapixels (1)
From Figure 14, the mean value of Cinax is 2.847
bits/pixel. Since this camera has 16 Megapixels, the total

capacity, CmaxTotal, for the Luminance (Y) channel = 45.55
MB.
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Summary of the Edge variance method

The edge variance method calculates the spatially
dependent noise in addition to the signal from a slanted
edge. A mean (or peak value) of the noise is substituted
into the Shannon-Hartley equation to calculate informa-
tion capacity, C» (directly from an n:1 contrast chart) or
Cmax (the maximum information capacity, which is
independent of exposure and chart contrast).

The Noise Image method, below, calculates the noise
spectrum, which is used to derive several useful metrics
related to edge and object detection. The noise spectrum
is normalized using the edge variance noise.

The Noise Image Method

The noise image method is the second of two me-
thods for calculating noise and image information met-
rics. It calculates the frequency-dependent noise (the
Noise Power Spectrum, NPS(f)) instead of the spatially
dependent noise power, os%(x). This enables the calcula-
tion of a particularly rich set of metrics.

The method involves inverting the ISO 12233 binning
procedure. Noting that the 4X oversampled edge was
created by interleaving the contents of 4 bins, each of
which contains an averaged (noise-reduced) signal
derived from the original image, we apply an inverse of
the binning algorithm to set the contents of each scan
line to its corresponding interleave (Inverse-binned,
below). Since the inverse-binned image is a nearly
noiseless replica of the original image, we can create a
noise image by subtracting the inverse-binned image
from the original image (which must be corrected for
illumination nonuniformity in the direction of the edge).

The three images are shown in Figure 15. The other
images are displayed with gamma-correction.

Norman Koren

Inverse-binned
(de-interleaved)
Figure 15. Noise image method, for a noisy (high ISO speed) image

Original image Noise image

Noise image =
Original image - Inverse-binned image (12)

The noise image, which has a mean of zero, is dis-
played with an offset, lightened, and boosted in contrast
for visibility.

These images allow several additional image quality
parameters to be calculated, including Noise Power
(Wiener) Spectrum (NPS(f)) and Noise Equivalent Quanta
(NEQ(f)), well-known in medical imaging systems, and
described in an excellent review paper by lan Cunningham
and Rodney Shaw [16], and also in the obscure but
valuable ICRU Report 54 [17]. (ICRU is the International
Commission on Radiation Units & Measurements.) These
measurements are little-known outside of medical
imaging, in part because they have been difficult to
measure.

One caution is in order: the Noise Image method
should only be used with minimally processed images:
results are invalid for bilateral-filtered images and have
limited value for images that have been sharpened or
noise-reduced.

Noise Power Spectrum (NPS)

NPS(f), also called the Wiener spectrum (Figure 16), is
used in the calculation of the key information metrics.
The Noise Amplitude (Voltage) Spectrum, N, (f) =

JNPS(f) is also of interest.
The 1D Noise Power or Voltage spectrum is derived
from a 2D Fourier transform (FFT) of the noise image.

* Noting that f= 0 at the center of the 2D FFT image,
divide it into several annular regions, and find the
average noise power for each region. This procedure
has been used for the Imatest Spilled Coins/Dead
Leaves calculations since 2013, and has been tested
thoroughly.

*  Because this procedure does not maintain the inva-
riance in energy between the spatial and frequency
domains implied by Parseval’s theorem, NPS(f) is
normalized so that the one-dimensional integrals in
frequency and spatial domain are equal.

Image information metrics from slanted edges P.8
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fNPS(f) df = fasz(x) dx = fN(x) dx (13)

Even though this paper focuses on metrics derived
from the noise image method, the spatially dependent
noise from the Edge variance method, 62 (x), is useful for
two purposes.

e to determine what type of image processing
has been applied.

e tonormalize NPS(f), ensuring consistent
scaling, even for small ROIs, where the de-
binned image is not entirely noiseless.

Demosaicing typically causes the Noise Power Spec-
trum to drop to about half its low frequency value at the
Nyquist frequency (fnyq = 0.5 C/P).
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Figure 16. Noise Power Spectrum (NPS(f))

The primary use of NPS(f) is for the calculation of
most of the image information metrics introduced in this
paper— NEQ, Cneg, SNRi, Edge SNRi, and matched filter
transfer functions.

It is a part of the kernel k that appears in the equa-
tions for most of the metrics.

K(f) = SFR*(f)/NPS(f) (14)

Equations will be written in standard form, then with
K(f). Because uniform filtering affects SFR?(f) and NPS(f)
identically, K(f) is not affected by uniform filtering, such
as sharpening or lowpass filtering.

The noise autocorrelation, which is inverse Fourier
transform (IFT) of NPS(f), is potentially useful for evalu-
ating the crosstalk between image sensor pixels, but the
Bayer Color Filter Array (CFA) makes such measure-
ments challenging.

Noise Equivalent Quanta, NEQ

NEQ(f) (Figure 17) is a frequency-dependent Signal-
to-Noise (power) Ratio, related to the number of quanta
that would result in the measured SNR when photon
shot noise is dominant. It was described in 1999 by Cun-
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ningham and Shaw [16] and in 2016 by Keelan [18], and
itis used in medical imaging [16, 17, 19].

u* SFR*(f) _

NEQ() = “pscr = K K()

(15)

where the mean linear signal, ¢, can be defined in
either of two ways, depending on how NEQ is to be
applied.
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Figure 17. Noise Equivalent Quanta (NEQ(f))

In the standard definition of NEQ, u? = V,2.,, (Figure
4).If NPS is dominated by photon shot noise, we can use
the well-known property of the Poisson distribution,
SNR? = g (where g is the mean count of the detected
quanta.) to show that NEQ(0) = g. For example, NEQ(0)
=200 corresponds to a mean of § = 200 detected quanta
per pixel. But because nonuniform illumination can
increase NPS at the lowest spatial frequencies, causing
NEQ to decrease, the maximum value of NEQ appears to
be better for estimating g.

The above equation can be used for calculating
Detective Quantum Efficiency), DQE(f) = NEQ(f)/q;,
where @; is the mean number of quanta /ncident on each
pixel. This requires a separate (and exacting) measure-
ment of g;. But because the slanted edge has two levels,
we are not currently using it to measure DQE.

NEQ(f) is not affected by electronic filtering.

Information capacity from NEQ, Cygg

NEQinfo(f) (a variant of NEQ), calculated from (15)
using y = Vp_p /12 (to be consistent with the Edge
Variance calculation for uniformly distributed levels), is
signal power divided by noise power. It can therefore be
substituted into the Shannon-Hartley equation to
calculate information capacity, Cneq.

w
Cuzo = | 10ga (14 NEQuro () df

0.5
- f logo(1+x2 K())df  (16)
0
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where W = fiyq= 0.5 Cycles/Pixel. [Author’s note: |
thought I discovered this connection, but I found it in
papers on PET scanners and Digital Mammography
by Christos Michail et. al. [20-21]— almost certainly
unknown outside medical imaging.]

The key results, C4(NEQ) and Cmax(NEQ), are included
in the Results summary (Figure 18). They are slightly
different from the Edge Variance results, most likely
because NPS(f), is used. (The Edge Variance calculation
assumes constant NPS, i.e., white noise.)

Channel R G B Y
Info capacity C,,_ (EdgeVar) = 354 411 376 4.23

Infocapacity C (EdgeVar) = 163 212 171 222
Infocapacity C,,_ (NEQ) = 387 457 402 466
Info capacity C, (NEQ) =161 226 172 236

Figure 18. Information capacity C from the two methods:
Edge variance and Noise image.

Ideal Observer SNR (SNRi)

SNRi (Figure 20) is a measure of the detectability of
objects. It was introduced and rigorously correlated with
Bayesian detection statistics in the 1996 ICRU Report 54
[17], then reintroduced to the imaging community Paul
Kane [23] and Orit Skorka and Paul Kane [22]. The two-
dimensional equation in [22] gives the best results.

2
FR?
SNRizzﬂ <|G(vx,1/y)| S (V"'vy)>dvx av,

NPS(vy, vy)

= J-f|G(vx,vy)|2 K(vy,vy) dvy dv,, a7

where G (v, vy) is the two-dimensional Fourier
transform of the rectangular object to be detected, g(x,),
and SFR(v) and NPS(v) are defined in one dimension for
spatial frequency v = \/vZ + vZ, which has units of
Cycles/Pixel.

Objects to be analyzed are typically rectangles of
dimensions w x kw, where k = 1 for a square or 4 for a
1:4 aspect ratio rectangle. Amplitude, Vp-p, is typically
taken from the chart (typically with a 4:1 contrast
ratio). The equation for the rectangular object (Figure
19)is

x
g(x,y) =Vp_p - rect (W) - rect (%) (18)

where rect(x/w) = 1 for -w/2 <x <w/2; 0 otherwise

Norman Koren

Rectangular function

rect(x/w)

<— w —>|

Figure 19. rect function

sin(mwv,) sin(kwv,,)

G(vy, =kw? Vp_
(v vy) = kw? Vo_p TWV, Tkwv,,

= Vp-p Grect(vx'vy) (19)

where G,..s = w sinc(ww/2) = w sinc(mwv) is the
Fourier transform of rect(x/w) for frequency v. Note that
Grece has units of 1/v2, and since v has units of
cycles/pixel, G(vx, vy) has units of pixels2.

SNRi? is calculated numerically by creating a two-
dimensional array of frequencies (0 to 0.5 c/pin 51
steps) with vx on the x-axis and v, on the y-axis, filled
with frequency v = \/vZ + v3. These frequencies are
used to create a 2D array that can be numerically
summed [23].

Ny SFR2(i,j) G*(i,))
NPS(i,))

Ny
SNRi? = Av, Av,, Z
i=

i=14=dj=1

(20)
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Figure 20. SNRi for a sharp, low-noise (ISO 100) image

Note that like C4, SNRi is strongly affected by expo-
sure and chart contrast. But unlike C4, SNRI is also affe-
cted by Image Signal Processing (ISP; electronic filtering
such as sharpening or lowpass filtering).

Although SNRi is a powerful measurement, we also
give weight to a closely related measurement, Edge SNRi,
for determining the performance of ISP applied before
sending the image to the Object Recognition/Machine
Vision/Al block).

As aresult of Parseval’s theorem, which states that
the integrals of a Fourier transform pair, r(x) and R(w),
must be equal,

| Gl = - [ IR@Fdo = | IRGanf)af

Image information metrics from slanted edges P. 10



(21

SNRI? is equivalent to the total (integrated) noise-
whitened Signal/Noise energy of the object in the spatial
domain.

SNRi displayed in dB per pixel squared
Because standard SNRi plots can be difficult to read
(in part because SNRi has units of pixels?), SNRi can also
be plotted in dB per pixel? (Figure 21). It is somewhat
easier to read than the standard SNRi image, but it is
more of a relative measurement— useful for evaluating

changes from image processing.
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Figure 21. SNRi per pixel? for a sharp, low-noise (ISO 100) image

Object visibility and SNRi

One of the uses of SNRi measurements is to predict
object visibility for small, low contrast squares or rec-
tangles. The SNRi prediction begs for visual
confirmation.

We have developed a display that does this with real
slanted-edge image data. Despite the trickery, the data is
directly from the acquired image.

We show two images, below: Figure 22 for a rela-
tively low-noise image and Figure 23 for a noisy image
(both from a camera with Micro Four-Thirds sensors, at
ISO 100 and 12800). The sides of the squares are w=1,
2,3,4,7,10, 14, and 20 pixels. The original chart has a
4:1 contrast ratio (light/dark = 4), equivalent to a
Michelson contrast Cy;cp, = (light-dark)/(light+dark) =
0.6. The outer squares have Cuich = 0.6. The middle and
inner squares have Cuich = 0.3 and 0.15, respectively.

How to use these images

The yellow numbers are the square widths in pixels.
The outer (left and right) patches correspond to the
SNRi curves for the ISO 12233-standard 4:1 contrast
ratio, where, according to the Rose model [16], SNRi of 5
(14 dB) should correspond to the threshold of visibility.

Norman Koren
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SonyAB000_Star_SG__60mm_f8_IS0100_s0.8_00091_standard.tiff
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Figure 22. Low noise image, 1ISO 100.
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Figure 23. Noisy image, ISO 12800.

The SNRi curve in Figure 24 is for the noisy ISO
12800 image in Figure 23, above. The w = 1 squares are
invisible; the w = 2 and 3 squares are only marginally
visible, and w = 4 squares are clearly visible. In Figure
23, the Y (luminance) channel SNRi at w = 2 is 15 dB; it
reaches 19 dB for w = 3; a little above the expectation
that the threshold of visibility is around 14 dB.
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Figure 24. SNRi for noisy ISO 12800 image (above)

Only original pixels were used in these images of
squares, but we used some “smoke and mirrors” tricks
to make squares that have the same blur as the original
image

How the squares were made

1. Expand the image if needed to make room for all the squares by
adding mirrored versions of image to the sides, top, and bottom of the
image.

2. Create a (horizontal) mirror of the full image. This is the “mirror”
part.

3.  Create a mask consisting of ideal w x w squares, with 0 in the
background, 1 in the squares, and sharp sides.

4.  Blur the squares with the MATLARB filter2 function. This is the
“smoke” part. Determining the blur kernel was challenging. We
found that we couldn’t get good results by just using the 1D Line
Spread function (LSF) in 2D. A more complex transformation was
required.

5. Linearize the two images (remove the gamma encoding).

6.  Combine them using the mask, using the original image where the
mask = 0, the mirrored image where the mask = 1, and blending them
elsewhere.

7.  Reapply the gamma encoding.

Edge Signal-to-Noise Ratio (Edge SNRi)

Edge SNRi is a measure of the detectability of the
edges of objects. It is similar to SNRi, described above
and in [17, 22, 23].

Edge SNRi?

-l

= ff|H(vx,vy)|2 K(vx,vy) dv, dvy (22)

2
|[Hve, v)|” SFR? (v, vy)
NPS(vy,vy)

dvy dv,,

H(vxVy) is the Fourier transform of the edges (the
gradient) of the object to be detected.

For a rectangle of dimensions w x kw, the function is
the derivative, h(x, y), of the rectangle, g(x, y), that
describes the object.

Vp-pis typically obtained from a chart with a 4:1
contrast ratio. SNRi and Edge SNRi are both proportional
to the Michelson contrast of the chart ((n-1)/(n+1)), and
can be scaled for different contrast levels.
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h(x,y) =Vp_p-d [rect (%)] Jdx-d [rect (%)] /dy
= Voo 1 (S) 1 (1) 23)

where I;(x/w) = d(rect(x/w)/dx (Figure 25) is called
the “odd impulse pair,” consisting of a pair of Dirac delta
functions of opposite polarity separated by the object
width w.

Odd impulse pair

LGx/wy=3[8(x+5) =8 (x~3)]

Figure 25. Odd impulse pair

H(vywy) is the Fourier transform of the edges of the
object to be detected, equivalent to 2rv G(vxvy) for
frequency v. Expressed in two dimensions,

H(vy, vy) = 2 Vp_p sin(mwv,) sin(mkwv,)  (24)

Edge SNRi? (Figure 26) is numerically calculated
using a similar equation to SNRi2.
Ny SFR2(i,j) H*(i,))
NPS(, j)

Ny
Edge SNRi* = Avy, Av,, z
i=

i=14=dj=1

(25)
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Figure 26. Edge SNRi for a sharp, low-noise (ISO 100) image

SNRi is affected by signal processing (sharpening,
etc.), making it useful for evaluating filtering (ISP
filtering applied prior to the object recognition/machine
learning/Al blocks).

Line Spread Function (LSF) doublet results

Edge SNRi is based on pairs of Line Spread Functions
of opposite polarity called LSF doublets, r(x) (Figure 27),
which are used in several key calculations.
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Figure 27. LSF doublets. w = 5.0 pixels (left), w = 0.5 pixels (right)
Amplitude for w = 0.5 is 1/3 as large as for w = 5.0 pixels.

As spacing w decreases, the peaks are shifted more
from their original locations and amplitude decreases.

As aresult of Parseval’s theorem, Edge SNRI?, which
is defined in frequency domain, is equivalent to the total
(integrated) Line Spread Function doublet energy
divided by Noise energy in the spatial domain.

Effects of Image Signal Processing (ISP)

Several recent papers [24-26] state that appropriate
image processing prior to Object Recognition, Machine
Vision or Artificial Intelligence algorithms may improve
the performance (accuracy, speed, and power consump-
tion) of Al systems. Because information capacity is
independent of Image Signal Processing— at least with
ISP that does not remove information, such as Unsharp
Mask (USM) sharpening— it provides little guidance
about filter design for optimal image processing.

SNRi has some drawbacks for predicting the quality
object detection. It indicates how well the presence of an
object can be detected, but it says nothing about its
shape. Shape detection is dependent on the edge detec-
tion, which is quantified by Edge SNRi. And there is the
problem of object color. What If the object has the same
color as the background? (Think of gray cars in front of
gray concrete.) In such cases it is the edge that matters.
For this reason, Edge SNRi should be given comparable
weight to SNRi when designing filters.

Image signal processing algorithms can be designed
to optimize a specific task, for example, the detection of
an object of a specific size, often a small rectangle, or the
detection of its edges. In practice, ISP needs to perform a
multitude of tasks: detecting objects and edges greater
than a minimum size and limiting interference from
neighboring objects.

The results in the table below were obtained starting
with an unsharpened image, applying various combina-
tions of sharpening (USM with Radius R, Amount A) and
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lowpass filtering (blurring) to w x 4w rectangles (w in

pixels).

Table 2. Results for various filters for a 24 MP Micro Four-
Thirds camera, 1 inch sensor, ISO 100, w x 4w rectangle.

Filter MTF50 | Edge | Edge | SNRi SNRi Cmax
(IsO C/P SNRi | SNRi | dB/Pxl | dB/Pxl | (NEQ)
100) w=1 |lgw w=1 w=5

None 0.210 9.07 11.7 25.6 28.6 3.87
0=0.8 | 0.149 9.52 13.2 27.7 31.2 3.65
LPF

UsSM 0.377 3.31 6.51 20.5 22.7 3.35
R2A3

UsSM 0.276 6.41 9.23 22.9 25.0 3.6
R2A3,

0=0.8

UsM 0.271 9.80 12.2 25.9 28.7 3.9
R1A2

0=0.7

Table 3. Results for various filters for a 24 MP Micro Four-
Thirds camera, ISO 800, w x 4w rectangle.

Filter | MTF50 | Edge | Edge | SNRi SNRi | Cmax
(ISO C/IP SNRi | SNRi | dB/Pxl | dB/Pxl | (NEQ)
800) w=1 Igw w=1 w=5

None 0.211 0.41 3.35 17.7 22.7 2.75
0=0.8 0.149 2.28 5.70 20.2 25.2 2.67
LPF

UsM 0.369 -2.91 0.73 15.2 18.9 2.39
R2A3

UsSM 0.292 1.25 4.05 17.9 23.0 2.62
R2A3,

0=0.8

UsMm 0.262 1.68 4.29 18.4 231 2,77
R1A2

0=0.7

We can make several observations from these results.
A pure lowpass filter (LPF o = 0.8) improves
Edge SNRi and SNRi.
Pure sharpening (R2A3) degrades both metrics.
This shows that strong oversharpening, which is
often used boost summary metrics like MTF50,
can seriously degrade performance. It can be
identified by strong edge “halos” and SFR peaks
(Figure 13).

Sharpening (USM R2A3) + LPF (¢ = 0.8)

improves £dge SNRiand SNRi, though less than
the pure LPF.
The approximation to the matched filter in Figure
30, USM R1A2 + LPF 0 = 0.7 is slightly better

than R2A3 0=0.8, though not quite as good as the

pure LPF.

The bottom line is that appropriate lowpass filtering
improves performance, and some sharpening, when
combined with LPF, may also improve performance. Of
course, these are just a few of many filter combinations

of potential interest. And they are for one specific
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camera at two ISO speeds (Exposure Indices 100 and
800).

And as we indicated, filters should be designed for
more than a single task. The pure LPF performs well in
the absence of interfering objects. Some sharpening may
reduce the effects of this interference, and as we have
shown, sharpening, when combined with lowpass
filtering, causes little performance degradation.

Matched filters

A matched filter [27] (sometimes called a “noise-whi-
tened matched filter”) is a custom filter that maximizes
the SNR, i.e., the detection probability, for

e asystem with a specific response, and
e aspecific object (or edge).

Matched filters were originally developed for impulse
detection in radar (a single airplane at a large distance).
They are discussed in ICRU Report 54 [17], but were
mostly ignored outside medical imaging because they
have little relevance to human vision. That has changed
with the advent of machine vision and artificial intelli-
gence.

For an impulse (a 6-function, i.e., the airplane), the
matched filter transfer function is identical to the noise-
whitened system response (where “noise whitening” is

division by Ny, (f), or equivalently, / NPS(f) ).

Fmatenea(f) = SFR(f)/(JNPS(F)) = JK(f) (26)

A matched filter, Frgicnea (f), which optimizes SNRi
or Edge SNRi, has the same frequency spectrum as the
system, including the edge or object. For edge or object
detection,

IP(f)I SFR(f)
JNPS(H)

P(f) is equal to G(f) (the Fourier transform of the
object) for SNRi or H(f) (the Fourier transform of the
edge) for Edge SNRi.

Figures 28 and 29 show the transfer functions for
matched filters for SNRi or Edge SNRi. The Edge SNRi
matched filter and the USM+LPF Image Processing filter
designed to approximate it (Figure 30) have response
peaks around 0.20 Cycles/Pixel.

Tmatched(f) N = |P(f)|\/5(f) (27)
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Figure 28. Matched filter for optimum object: Lowpass (LPF).
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Figure 29. Matched filter for optimum edge detection. Can be
approximated with sharpening + LPF.

Matched filters are optimized for a single task: detec-
ting an object or edge of a certain size (by maximizing
SNRi or Edge SNRi). But real-world filters must perform
a multitude of tasks: they must detect objects and edges
of varying sizes, contrasts, and colors. This calls for
tradeoffs, which are not severe. Since large objects are
usually detected well, filters should be designed to
perform well with small objects or edges.

Figure 30 shows the filter transfer function for a
gaussian lowpass filter with o= 0.7, combined with a
USM filter with Radius = 1 and Amount = 2 (R1A2).

MTF (processe(2) / input(1)) for 8 segments

o
o
T

— ean

MTF ((2)/(1) Transfer Function)

Seg 1 (0%)
Seq 2 (45°)
Seg 3(90°)
Seg 4 (135%)
Seg 5(180°)
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Seq 7(270°)
Seg 8 (315°)

o
o

04

Peak freqs =0.199 Amplitude = 1.39

Imatest 24.1.0. ALPHA Master

1072 107"
Spatial frequency in Cycles/Pixel

Figure 30. Filter transfer function for o = 0.7, R1A2. A first approximation to a
tradeoff between optimizing SNRi and Edge SNRIi.
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This transfer function approximates the edge
matched filter in Figure 28. The matched filter can be
realized by combining a standard lowpass filter (Bessel,
Butterworth, etc.) with standard sharpening or unsharp
masking (USM). Details for realizing this filter are
beyond the scope of this paper.

Exposure and pixel level

Most of the performance metrics discussed in this
paper, including NEQ(f), Cneo, SNRi, and Edge SNRI, are
sensitive to exposure, increasing as exposure increases.
For this reason, we need to maintain consistent expo-
sure when acquiring images, especially when comparing
different cameras. Linearized Digital Numbers (DNs or
pixel levels) should be similar. A reasonable level will
need to be established as we develop best practices for
measurement.

Low light measurements are, of course, important,
especially for video systems, where the maximum expo-
sure time is limited, making it necessary to increase the
analog gain (at the expense of SNR) at low light levels. It
may be fruitful to measure Cs (rather than Cmax) as a
function of exposure, especially at low light. We are still
developing best practices for taking advantage of the
new metrics.

Summary

The basic premise of this work is that traditional
sharpness and noise metrics are insufficient to directly
predict object and edge detection performance, and
hence are poor predictors of Machine Vision/Artificial
Intelligence system performance. And they provide no
insight into how to design image processing for optimum
performance. The new metrics and techniques described
here are intended to accomplish this. They include

1. Two methods for measuring camera noise from
slanted edges— spatially dependent noise, as(x),
from the edge variance method, and the noise
power spectrum, NPS(f), from the noise image
method.

2. Techniques for calculating camera information
capacity from the average signal and noise power
from both methods.

3. A set of metrics for quantifying object and edge
detection performance, primarily derived from
the noise image method, including NPS(f), NEQ(f),
Cneg, SNRi, and Edge SNRi.

4. Atechnique for designing matched filters for
optimizing detection performance, based on a
tradeoff between maximizing SNRi and Edge SNRi
and minimizing interference from nearby objects.

5. Note that the equations for the information met-
rics and matched filters all contain the equation

Norman Koren

kernel, K(f) = SFR2(f)/NPS(f). This unifies
the results from the noise image method.

We need to verify that these calculations and design
techniques work as intended— that they correlate well
with MV /Al system performance.

The key concepts presented in this paper are

1. Information capacity, which combines sharp-
ness, noise, contrast loss, is a fundamental
figure merit for imaging systems that is appro-
priate for selecting cameras.

2. Both spatial and frequency-dependent noise can
be measured from slanted-edge regions at the
same location, in the presence of the signal. Co-
locating signal and noise measurements makes
the measurements convenient, robust, and
reduces the likelihood of error.

3. Anoise peak in os(x) allows bilateral-filtered
images to be distinguished from uniformly-
processed images for “black box” cameras with
unknown image processing, so that the opti-
mum noise calculation can be selected.

4. Information capacity, Cs, measured from n:1
contrast slanted edges (typically 4:1), is
sensitive to chart contrast and exposure, but it
can be extrapolated to calculate a stable maxi-
mum information capacity, Cax-

Camera information capacity and related information
metrics are still novel in the imaging industry. Significant
effort will be required to make them better known. But
the units for C— information bits per pixel (or total
image) for a specified ISO speed or exposure— are
intuitive and easy to understand.

We would like to see information capacity become a
standard specification for cameras intended for machine
vision. And we would like to see better use made of edge
and object detection metrics, SNRi and Edge SNRi. Came-
ras should be characterized with measurements made
over a range of ISO speeds (exposure indices) and/or
light (lux) levels. We are optimistic that this will lead to
improved performance and reduced energy use [28].

Future work

e (Collaborate with partners in academia and in-
dustry to correlate camera information capacity,
C, and object and edge detection metrics, SNRi
and Edge SNRI, with the performance of Machine
Vision and Artificial Intelligence systems.

o Verify the validity of the new Edge SNRi metric,
which is similar to SNRi, but has not has not been
subjected to the same rigorous verification [17,
23]— correlating it with Bayesian statistics.
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e Become familiar with the measured numbers for
the metrics (e.g., what are “good” values of SNRi
or Edge SNRi?) Transform units from native sen-
sor native units of cycles/pixel to practical units
like cycles/angle or cycles per object distance, as
needed.

e Determine best practices for measuring the
information capacity of High Dynamic Range
(HDR) sensors.

e Determine best practices for designing the
output (matched) filter: How much weight
should SNRi and Edge SNRi be given? What about
sharpening to limit external interference?

e Work on the ISO 23654 standard, Photography -
Digital cameras - image Information Metrics,
overseen by ISO TC42.

o Explore the correlation between C with the
subjective visual appearance of a variety of
images, without and with additional image
processing.
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