New camera quality measurements for
optimizing Machine Vision systems

Norman Koren, Founder and CTO, Imatest, LLC
May 22, 2024 Revised June 28, 2024 /

Motivation: Traditional metrics such as sharpness AUtO
(MTF or SFR) and noise, taken by themselves, are not SEI‘IS
adequate for predicting Machine Vision/Artificial
Intelligence (MV/AI) system performance.

We describe new metrics, based on camera
information capacity, that are superior predictors of
system performance.
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Outline of the talk

Review: what is information and how is it measured?

Define information metrics and show how they are calculated.
Key image information metrics

« SNRi: Independent observer SNR (for object detection)

- Edge Location o: uncertainty of edge location (for edge detection)
Matched filter for optimizing MV/Al system performance

Examples showing effects of illumination and image processing
(filtering)

We are working on incorporating the new metrics into ISO 23654,
Photography — Digital cameras — Image Information Metrics. Your
participation is encouraged. The next meeting is June 11-14 in New York.
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Information concepts

Information, defined by Claude Shannon in 1948, is a measure of the resolution
of uncertainty. It is the basis of all electronic communications.

For a system with S possible states, s, ..., s, with probabilities p(s, ), information
can be represented as entropy, H(S) = Y-, p(s1)log,(1/p(s¢)). Log, is the key.

The number of states S is closely related to the Signal-to-Noise Ratio (S/N or
SNR) of a continuous system.

Electronic channels — including cameras — can be characterized by a channel
capacity, C (the maximum rate that information that can be transmitted without

error), calculated from the Shannon-Hartley equation.
units are bits/pixel or bits/image.

S¢f )> | bandwidth, W,
C=W lo j lo (1 L2 nputs are bandwidth, W,
92 ( ) 52 N(f) o average signal power, S, and

noise power, N.
The key performance indicators for MV/AI systems are closely related to C.
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Information capacity from the slanted edge

The key to conveniently calculating information capacity, C,
is to measure signal and noise in the same location.

This can be accomplished with the widely used slanted edge test
pattern, which is a part of the ISO 12233 standard. It's fast and compact
enough to map MTF over an entire image. The I1SO algorithm

* Linearizes the image,

* Finds the center of each scan line,

* Fits the centers to a polynomial,

* Adds each shifted scan line to one of four bins to obtain a 4x
oversampled averaged edge, V(x) = u (x), shown on the el P ——

G3_eSFR_ISO160_excmp0P1060132.tiff

right, which is used to calculate MTF and information metrics.  §°¢/, Signal 1) gyt s
oo (edge) [ e T
M M M . . g- ! :1(::::);2]4 =3 g. 1:'? Gl'::ﬁM;l':::;g 0.116
This effectively reduces noise by /samples in each bin. 8 e et

" V(x) |

from mean reguon noise

(=}
N
T

Best results are obtained when edge ROl length > 100 pixels. [e.g., - Ty U S—
100 pixels in 4 bins (25 per bin) reduces noise by V25 = 5.] ° e b
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Measuring noise from the slanted edge

To obtain the spatially dependent noise power for calculating C,
N(x), measured at the same location as the signal,

Sum the squares of each scan line to find the variance, o(x) = N(x),
L-1
Spatially dependent noise power N(x) = g2(x) = — y&(x) — pi(x)*

*N(x) is the mean of the squares minus the square of the mean, for each point x.

Noise amplitude o,(x) = \/N(x) can now be viewed. Examples:

Unlformly processed Bllateral f" ltered
o) Nmse _ §of's Noise .4 Peak N(x) can look very
fows| Os(X) <~ no peak gora oslx) AT 23;; . different for.different
: A NG 3 ol types of image
g 0004 -
§of processing.

o

N(x) does not fully characterize the noise. We still need to

calculate the Noise Power (Wiener) Spectrum. ]
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0.008

noise V for Info Capacity
=
=
[+]

Edge

Noise power N(x) for calculating information capacity, C
depends on the detected image processing type

G3_eSFR_ISO16
:

0_excmpOP 106013 2.t
T

. Noise
| 0(x)

i3

no peak

: Noise amplitude o,(x) = ,/N(x)

A peak in N(x) indicates
bilateral (nonuniform)
filtering.

pacity

Edge noise V for Info C

] S
T

o
T

L] £ =] @
T T T

Bilateral-filtered

Sharpened near the edge; noise-reduced
elsewhere. Most JPEG images from consumer
cameras

Identified by distinct noise peak

Uniformly or minimally processed

Unsharpened or uniformly sharpened. No noise
reduction

Little or no noise peak.
Cis calculated from N = mean(N(x)).

Most accurate calculation: best for camera C is calculated from the smoothed noise power

at the peak, where MTF is calculated.

performance. N=N
Required for calculating image information peak-smooth* _
metrics Less accurate than uniformly processed.
s ®
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I
Signal power for calculating information capacity C

1.£

The Shannon-Hartley equation uses the mean | P VT "
signal power, S ,0q4n(f), to calculate C. e Ymea [ BP
: maq= 321 b
Information capacity is maximum when the signal  *| 1 y
0 prtaa- : Imatest . min |\ Master |

is uniformly-distributed over Vp .
Mean signal power Spean(f) = (Vp—p MTF(f))2/12

The three factors, S04, N, and bandwidth W = fy,,, = 0.5 C/P are entered
into the Shannon-Hartley equation.

0.5/Af
w S S iA
Information capacity = C = J log, <1 + meﬁl(f)> df = z log, <1 + mea;:,( f)> Af
0 i=0
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N. Koren: New camera quality measurements for machine vision May 2024 rev. June 2024 P7 6 |matESt



e —————————————————————
Calculating information capacity C,and C, .

Camera 1 (10 MP) Shannon capacity C, & C_ _ vs. Exposure
from 4:1 Slanted-edges: raw-->TIFF & JPEG

‘ JPEG__fjﬂﬁww@ ..... ______________________ .

The measured value of Cis a strong function of the
chart contrast ratio as well as the exposure.

TIFF~

%E max
For this reason, we recommend specifying the chart & | Uniformly
: : I**| processed
contrast ratio when reporting C, for example, C,for ;.| progesse® _— — e T
. H ——C,, raw->TIFF
widely used ISO standard 4:1 contrast charts. 15 c, - SO
Since €y is strongly dependent on chart contrast Vian (Properional o exposure)

ratio and exposure, we have developed a more stable metric, Maximum infor-

mation capacity, C,,,., by extrapolating VV, jto 1], =1 (the maximum allowed

value) and adjusting the noise, which can be challenging for HDR sensors.

C...x IS a stable measurement, nearly independent of exposure, that can be
used to characterize cameras, but

C, is useful for characterizing camera performance as a function of exposure.
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Information capacity displays for C,and C, .,

The 3D plot shows C,, _
mapped over the image. C4_ and C,,,, are displayed
in the Edge/MTF plot.
Mean(C,,,,) = 2.96 b/p.

Total info capacity C,, = mean(C,,,,) * Information capacities

number of pixaé(ITsOt=aI4_7.23 Mb C,=2.36 b/p; C...=375 b/p.

ax

G3_eSFR_ISO160_excmp1P1060138.tiff
Edge Info Cap C_{max} V-edges

 1S0160_excmp1 P1060138 tiff

T T
21-Aug-2023 13:52:18
0.459

Edge profile NU Corr: Horiz (Wedge) (sagittal)

| 4608 x 3464 pixels (WxH)

16 Mpxls 8 bit
-~
E - ROI12: 165x259 pixels 10-90% rise = 2.46 pixels
] 5.6% left of ctr 0_0_L = 1407 per PH
I | 3 um per pixel Chart contrast = 4
IE = (chart) = 0.412 Use for MTF.
VIL.R,mean,A)= 0458 0.113 0.345 0.285
=
e r L =3 i
& | Edge 581° Info cap C,=2.36; C__ =3.75blp
E from NEQ (Noise image method)
B112 Imatest 23.2.0. ALPHA Master -
A A 'l A A A A
-30 =20 -10 0 10 20 30
LL Edge Info CapC_ Pixels (Hor)
21-Aug-2023 13:52:18 24-bit color max=255 of 255 Mean: 2.959; total Mb: 47.23
4608x3464 pxls (WxH); 45ROIls; 16 Mpxis ‘cv:'tehr “ﬁ P‘-:t::wcnmu
L-channel Vert-edges; Gamma =0.40 (0.427 from ROls) 9! : 2
WTF symmerry 5= 5.0% 02% el
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C,and C,, results for three cameras

In auto-exposure cameras that keep image Digital Numbers (DNs) constant,
Exposure Index (El) (sometimes called I1SO speed) is proportional to analog gain, Hence
illumination and SNR decreases as Exposure Index (El) increases.

C,and C,,,, decrease with Exposure Index (El).
C,and C,,,, increase with pixel size, as expected.

Shannon capacity C, vs. Ex ure Index for three cameras Maximum Shannon capacity C vs. Exposure Index for three cameras
pacity &, s ) max
. from 4:1 Slanted-edge images: raw-—>TIFF & JPEG 5 from 4:1 Slanted-edge images: raw-->TIFF & JPEG

1 | I I 1 LI I I I T LI L | | I L T | U ! T Ty T T T T LI N T | | I LI T

\ s Camera 1: 10 Mpxl; 2.14 um pitch Camera 1: 10 Mpxl; 2.14m pitch
= 3 ——— Camera 2: 24 Mpx|; 3.88m pitch S 45 3 = Camera 2: 24 Mpxl; 3.88m pitch .
E 2.5 Lo ....................................... ——— Camera 3: 42 Mp)('; 4,5;:m pitch . E ......................... ™ ——— Camera 3: 42 MDX|; 4‘5]1m DitCh
3 : Bl I E e Camera 1: JPEG Noise calc 2 |LSF| N I Camera 1: JPEG Noise calc 2 |LSF]| |- |
N N R T T Camera 2: JPEG Noise calc 2 |LSF| a B e Camera 2: JPEG Noise calc 2 [LSF|
O o Camera 3: JPEG Noise calc 2 |LSF| | Q Camera 3: JPEG Noise calc 2 |LSF|
2 : T =) PRI
3 . g
g 4.5 uym BSI g
o A8 oo G NG g e R T Lo PO - g b TR S TR T L
c . .
o : o
§ 3.88 ym -
= : 3 =
5 1t 214 pm - 8
£ L 5
= o =
=] : : [=]
£ n £
g 0‘5 ................. E T T T L P PP E 5
n : w15 5

Exposure Index — Exposure Index —
0 Ll L L L 1l Ll 1Ll L L L 1 Ll 11l 1 Ll L L L | Ll 1Ll L L L 'l ) |

102 10° 10* 10° 102 103 10* 10°
Exposure Index (ISO speed) Exposure Index (ISO speed)

C.... is larger than C, by roughly 2 bits/pixel.
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.
Sharpening and information capacity

Uniform Sharpening has little effect on C
because it boosts the high frequency signal
and noise by the same amount. C is unaffected by linear,

Minimally processed TIFF USM-sharpened TIFF reversable image processing.

LX5 Star SG 10.7mm f4 1SO100 s1-4 1010173.tiff LX5_Star_SG__10-Tmm_f4_ISO100_s1-4_1010173-tiff-improc_sharpR2A2.pr

- B 2 2 2 S : ¢
I . = O C. € ¢ For this reason, it is not useful for

| Edge profile: Horiz (V-edge) (sagittal) 31-Dec-2022 10:57:55.

Edge profile: Horiz (V-edge) (sagittal) 31-Dec-2022 10:59:51
| 3664 x 2754 pixels (WxH) 188 3‘;’3“1"“’127;": F’:E:f (WxH) . . . . .
o | 101 oot g [ Joruee wu finding optimum image processing.
8 [ROI: 102x154 pixels 10-90% rise = 2.21 pixels o | RO 102x154 pixe
£ | 26% left of ctr = 1246 per PH £ [ 26%leftofctr 10-90% rige = 0.63 pixels
:.,' | Y-channel (YL 26} Over fundershoot= 1.5%/ 1.1% % Y-channel (YL 26} = 4385 per PH :
T . Chart contrast = 4 i - 52.6% o N H 1 H
g [ ey userorurs, | e miephoat= R84/ UK The image information metrics, to be
& Infocap C,=2.06; . =3.82blp; © 7(chart) = 0.439 Use for MTF. 0 . . .
==ty - g WViL.R. Ay = 1 8
8 e s d ezl R s S described in the following slides (espe-
from mean region noise E o . .
Imate 2.10. ALEHA Wstor Imatest 23.10 ALEHA Master cially SNRi and Edge Location o), serve
V4

-5 0 5 10 5 0 5 10

P L et _ this purpose because

MTF50 = 0.2598 Cy/Pxl MTF50 = 0.5524 Cy/PxI
=1431 LWIPH NR

= 3043 LW/PH NR

(RGB) = 0.285 0.263 0.197:Cy/Pxl (RGB)

tf

e aven) o RZd“t‘s =22 ' * They are sensitive to image
. wTF s Pitom -0zr3 0P | i Amt= .
£ c = |E processing, and
0.4 max = ] Cmax = N
3.82b/p | e 3.81b/p * they measure how well objects and

Nyquis :
MTF: Horiz (V-edge) w/NR MTF: Horiz (V-edge) w/NR T e P iy
5w woomm ol 5 om @ o mm edges are detected.

Frequency, Cycles/Pixel Frequency, Cycles/Pixel
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The key image information metrics
are derived from MTF and the Noise Power (Wiener) spectrum of the noise image.

To obtain the noise image

Note that the oversampled image consists of four averaged interleaves
from the original bins of the ISO 12233 calculation.

De-bin the image by moving the low-noise contents of each interleave back
to their original locations.

The de-binned image (2) has much lower noise than the original (1).

Micro 4/3 camera

Noise image (3) = original image (1) — de-binned image (2). @ 15O 12800
(1) (2) (3) Noise image =
Original De-binned original — de-binned

The noise (which

has a mean of 0)

image is shown
lightened.
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Key image information metrics are derived from the noise image

* Noise Power Spectrum (NPS)
* Noise Equivalent Quanta (NEQ) — a frequency-dependent SNR used in metical imaging
* Information capacity, C NEQ derived from NEQ

* |deal observer Signal-to-Noise Ratio (SNRi) —
detectability of small objects (whether it is present).

 Edge SNRi & Edge Location o (standard deviation) —

accuracy of object location (shape and position).

Additional metrics (will not be covered in detail)
* Detective Quantum Efficiency (DQE) — derived from NEQ

* Noise Autocorrelation — may indicate sensor crosstalk

* QObject visibility — of small/low contrast objects, shown on the right.
Derived from SNRi.
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D
Noise Power (Wiener) Spectrum NPS( f)

The 2D Fourier Transform (FFT) of the noise image must be transformed into 1D.

* Noting that f= 0 at the center of the 2D FFT image (from MATLAB fft2 and fftshift), divide it
into several annular regions, and find the average noise power for each region.

* Because this procedure does not maintain the invariance in energy between the spatial and
frequency domains implied by Parseval’s theorem,

Normalize NPS(f) so that [ NPS(f) df = [ 6%(x) dx = [ N(x) dx

Son ynsmn Bla - §G__ ﬁllrnm _f8_| ISD‘IGI’.' l-ﬂl.ﬂ Mlﬁi standa dtlff
1

The noise amplitude (voltage) spectrum is " Noise Power Spectrum (NPS)
Ny(f) = JNPS() : NPS(/)
=
g
NPS( f) is a part of the kernel that g 0°
defines image information metrics, 3 |
K(f) = MTF*(f)/NPS(f). T )

-
=]
&

0 005 01 015 02 0_25 03 035 04 045 0.5
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Noise Equivalent Quanta NEQ( f)

SonyAB000_Star_SG__60mm_fE_ISO100_s0.8_00091_standard tiff
r T T T ¥ T T T
Noise Equivalent Quanta (NEQ)

NEQ( f) Frequency-dependent Signal-to-Noise
(power) Ratio, equivalent to the number of
guanta that would generate the measured SNR
when photon shot noise is dominant. Used in
medical imaging.

NEQ

N f F / \
N S T O

L

10% | \\
| §

Noise Equivalent Quanta (NEQ) per pixel

Fregquency, Cycles/Pixel —

0 005 0.1 015 02 025 03 035 04 045 05

V2 oan MTF?
NEQ(f) — NPS(f) (f) — V%neanK(f)

K(f) = MTF*(f)/NPS(f) is the kernel (the defining factor) of the
image information metrics to be introduced.

Because uniform filtering affects MTF?(f) and NPS(f) identically,
NEQ( f) and K( f) are not affected by uniform, reversable filtering
such as sharpening or lowpass filtering.

. ®
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Calculations derived from NEQ( f)

An information capacity, Cyg,, can be calculated from NEQ(f) by substituting
Vo_p /V/12 (for a uniform distribution) for V.

ean:

fryq
Creo = j 10g2(1 + NEQinso(f)) df

0
Cygo can be thought of as a
i Channel R G B Y
summary metric for NEQ(f). Info capacity C,,_ (EdgeVar) = 354 4.11 376 4.23
Results are close to € from edge Info capacity C,(EdgeVar) = 163 212 171 222
variance; they differ because Cyg,  InfocapaciyC,,(NEQ) =387 457 402 4.66
includes the noise spectrum. Info capacity C,(NEQ) =161 226 172 236
. . . . _ NEQ(f)

Detective Quantum Efficiency, DQE(f), is the ratio of NEQ(f) DQE(f) = —

(the number of quanta equivalent to the measured SNR) to the

mean number of incident quanta. It has maximum value of 1. Under development.
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Ideal Observer Signal-to-Noise Ratio S/VRi

S'NVRi is metric for the detectability of objects, calculated for w X kw rectangles.
For Ag(x,y) = AQ - rect(x/w) - rect(y/kw),

The Fourier transform of Ag(x, y) is

FFT(Ag(x,y)) = G(fy. fy) = kw?AQ

sin(nwf,) sin(mkwf,)

W [, kwf,

rect(x)

«— 1 —

SNRi? = [lyva [Java 6 (£, £)12 K(f) df, df, where f = [f2+ f?

Rescued by Paul Kane from ICRU Report 54 (an obscure
medical imaging document that correlates SNRi with

Bayesian detection statistics).

In spatial domain, SNRi? is the total energy of the object

S/N: related to object visibility.

SNRi is proportional to the Michelson contrast of the chart
((It-dk) /(It+dk)) (0.6 for 4:1 contrast ratio).

SNRi dB for w x 4w rectangle

SonyA6000_Star SG__60mm_f8_ISO800_s1-10_00095.tiff
T T T T T T T T

(a] Lad o
(= =] =1 g
T T T T

(=

w x 4w rectangle SNRi ROI 1

.-/-- .
- ROl 1: 178x268 pixels

6024 x 4024 pixels (WxH)

mean noise [Auto]

MTF50 =0.2123 C/P Ima 221

Edge V =0.0438 0.157
min, max

Feature size w in pixels for w x 4w rectangle —

13-May-2024 11:42:47

Chart contrast ratio =4 ]

0.5

100 2 5 101

Feature size w in pixels -

SNRi plots can be difficult to interpret because they strongly increase with w.

N. Koren:

New camera quality measurements for machine vision May 2024 rev. June 2024

20

P17 6 imatest”



https://www.icru.org/report/medical-imaging-the-assessment-of-image-quality-report-54/

I
SNRi per pixel
a better way of displaying S/VRi

SNRi — the metric for the S/VRi in units of SNR per distance

detectability of objects — is (pixels) is easier to grasp because it
difficult to interpret because it approaches a limit.

SunyAﬁﬂm Star_SG_ Bﬂmm _fa_| ISDBIJIJ 51 1D DNQS tiff

increases with object size
j ' R 2% | w X 4w rectangle SNFH per pixel
o
c L
SonyAﬁDﬂO Star_SG_ Bﬂmm _f8_| ISDBI]IJ s1 1IZI 00095 tiff NOte that the 2 M
w x 4w rectangle SNRI FtOl1 y_axis scales E 22
50 F 3 -
2 = 20
2 are very 2
8ol = 13-May-2024 13:4247
E different £ 18 RO 4 TTBx268 Pixels
3 i * %6l o ——T024% 4024 pixels (WxH) _
; 30 /’" 13-May-2024 11:42:47 7 =% - - Chart contrast ratio = 4
5 e ROl 1: 178x268 pixels E 1a b r__,_.f---" ) - mean noise [Auto] _
;',; = aﬂz‘;h;:iznit?::rga{lf::-: 1 E Py MTF50 = 0.2123 C/P Ima 22.1
& mean noise [Auto] = 12F Edge‘vminmaﬁ =0.0438 0.157
2 = MTF50 = 0.2123 C/P Ima 22.1 0 : . N
0 10 > EdgeV_, _ =0.04380.157 | ok o Feature size win plxells for w X 43# relc'lalnqlel—f
. Feature size win pixells for hlv X 43# relctalngllel—t 05 TUD 2 5 101 20

0.5 10% 2 5 10! 20

Feature size w in pixels =

We expect SNRi to be predictive of the key machine vision
performance metric, Mean Average Precision, mAP.

Feature size w in pixels -
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Edge SNRi

Edge SNRi, is new metric for the Odd impulse pair |(_ .

detectability of edge location or object shape. = |
1 w w

Similar to SNRi, with the object replaced by the edges I (x/w)=3 [5 (x i E) = (x N E)]

(the gradient of the object), which forms Line Spread
Function doublets (pairs opposite-polarity 6-functions spaced by w).

Ah(x,y) =Vp_p - I;(x/w) - I;(y /kw);

FFT(Ah(x: Y)) — H(fx: fy) — T[fo fy G (fx fy) = 2 Vp_p sin(nwf,) sin(nkwfy)

10

sage sNRi® = [[ |H(u ) K . af,

5]
T

Edge Location o, derived from Edge SNRi, is our preferred
metric for evaluating system performance (next slide).

02-Nov-2023 14:38:48
ROI 1; 169x263 pixels -
4288 x 2872 pixels (WxH)
mean noise [Auto]
MTF50 = 0.1579 Cy/Px| = 907.2 LW/PH

[=]
T

In spatial domain, Edge SNRi? is the energy of the LSF
doublets.

Edge-SNRi dB for w x 4w rectangular impulse

Feature size w in pixels for w x 4w rectangular impulse —
L L L | L L L 1 L L L

§
[4]

10? 2 5 10" 20

Affected by filtering (ISP). Feature size w in pixels >

o
i
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Edge Location o

Edge Location Standard Deviation (o) is metric 0dd impulse pair e w >

for the detectability of edge location or object I

shape. Lower is better. I,(x/w) = [6 ( ) (x - g)]
1

Edge Location o =
Y Edge SNRi

Sunyﬁﬁﬂﬂﬁ Star_SG_ Eﬂmm _f8_ IEDBI]I] 51 1l] ﬂﬂﬂ?ﬁ tiff

Edge Location o has units of pixels (but 16 Location Stama w & 4w fectingle
can be converted to object distance, angle,
etc.). Affected by filtering (ISP). Can be
used to design matched filters to optimize
location (shape) detection.

13-May-2024 11:42:47
ROl 1: 178x268 pixels
6024 x 4024 pixels (WxH)
Chart contrast ratio = 4
mean noise [Auta)
MTF50 = 02123 C/P Ima 221 7
Edge V ™ 0.0438 0.157 -

rrrrrr

—
i
-I_.“'

_.
i

i
L

o
[=2]
T

It is our preferred metric for evaluating Lower is better.

system performance.

o
o
T

Location Sigma for w x 4w rectangle

i IFezlimrelsilze w in pixels fnr Lo-caltinn Sligrni? f::-rlwlx 4.“ Irelctangle — ]
We expect it to be predictive of machine 05 o? 2 \ o' 2
vision performance metric, loU. Feature size w in pixels -
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.
Optimum filtering: the matched filter

A custom filter that maximizes the object or edge detection performance for a

specific system. Originally developed for radar. Described in ICRU Report 54 (an obscure medical
imaging document that connects SNRi with Bayesian detection statistics).

Matched filters optimize a single metric: SNRi or Edge Location o for a specific object width w.

If the matched filter transfer function (below) is known, it can be approximated by a lowpass filter
(Bessel, Butterworth, etc.), and, if needed, sharpening filter. The filter must perform well for a variety
of conditions, including interference from neighboring objects. This requires a tradeoff (not severe).

Best practices are needed for designing practical matched filters.

Object Matched Filter 1wt Edge Matched Filter
i w=2; w=1

w=5
w=2
w=1

Edge Matched Filter

(some sharpening +

Lowpass) optimizes
Edge Location o

Fregquency, Cycles/Pixel — ] i Frequency, Cycles/Pixel —

Object Matched FiIter' '
| (Lowpass) optimizes SNRi

Matched Filter for Object
Matched Filter for Edge

0 005 041 015 02 025 03 035 04 045 05 0 005 041 015 02 025 03 035 04 045 05
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Example 1a: Exposure Index
24 MP Micro Four-Thirds mirrorless camera
Vary Exposure Index (El; proportional to analog gain) from 100 to 12800.

With auto-exposure, increasing El decreases the light reaching the sensor,
but keeps the image Digital Numbers (DNs) relatively constant.

MTF50 C/P ' Information Capacity C, and C,,.,
0.25 :
4
0.2 3.5
o s C
~ X
O o015 \L ) g max
B Y O,
& 0.1 3
s Nearly constant O3
]
0.05 noise
Less illumination — Less illumination —
0
100 1000 10000 100 1000 10000
Exposure Index Exposure Index
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Example 1b: Exposure Index

24 MP Micro Four-Thirds mirrorless camera, El 100-12800

SNRi/pixel dB for w=1, 5 Location o for w x 4s rectangle; w=1, 5
30 0
O
X
25 2 s w = 1 pixel
- o | B
11 — - b )
T w = 5 pixels o |
) .
2 S 3 w = 5 pixels
o <
Z 10 O
@ >
5 Less illumination —
5 0.2
100 1000 10000 100 1000 10000
Exposure Index Exposure Index

As expected, performance improves with more illumination (lower El).
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Edge Location o

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4

Gaussian blur (LPF)
Edge Location o for w x 4w

Example 2: Image processing

24 MP Micro Four-Thirds mirrorless camera, El 800: Edge Location o (lower is better)

Sharpening-only

Edge Location o for w x 4w

rectangle; Gaussian blur-only rectangle; Lower is better

w = 1 pixel

0.9
0.85
0.8

0.9
w = 1 pixel 0.85

. /\/ . -
e 075 S
-‘% 07 :Fu'
o .
Q 065 w = 5 pixels S
~ 06 :‘) 0.6
[0}
_ . S 055 _g-,
w = 5 pixels S o S o
0.45 0.45
0.4 0.4
1 15 0 1 2 3 4 0

0

0.5

Gaussian blur pixels

Standard sharpening n (R2An)

LPF 0.7 + Sharpening

Edge Location o for w x 4w

rectangle;

0.7 pixel Gaussian blur

1

0.75

0.7 w =1 pixel
0.65

0.55 .

0.5 w = 5 pixels

2 3 4

Sharpening Amount: n (R2An)

Lowpass filtering (Gaussian blur = 0.7 & 1) makes some improvement. Sharpening-only causes

some degradation. LPF + Sharpening shows no clear trend.

The effects of image processing are not dramatic, perhaps

N. Koren:

because the original edge was very high quality.
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MTF50 C/P

Example 3: Sharpening

24 MP Micro Four-Thirds mirrorless camera, El 800
0.7 pixel Gaussian blur + Sharpening

o Edge Location o
MTF50 C/P SNRi/ pixel for w x 4w rectangle; w=1, 5

n Ao

Key performance metrics correlate

25 poorly with sharpness.
23 o _
\\\ 2 0.7 w=1 plxel

o
X
o
— 21 S 065
4 S 06
Z Q
n 19 S o055 .
0.15 MTF50 strongly increases 17 w = 1 pixel §, 0.5 w = 5 pixels
with sharpening ——w =5 pixels W 045 1 6wer is better.
0.1 15 0.4
0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 4
Sharpening Amount: n (R2An) Sharpening Amount: n (R2An) Sharpening Amount: n (R2An)

Key performance metrics SNRi and Location o are poorly correlated with sharpness (MTF50, etc.).
They and may even decrease.

Sharpness metrics (MTF50, etc.) are not good indicators of system performance.
Extreme oversharpening, which boosts noise, should be avoided.

P 25 6 Imatest”
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Example 4: Exposure compensation
Lower is better. 16MP Micro Four-Thirds mirrorless camera. El 160, f/5.6

Exposure compensation from -2 to 2 f-stops (dark to light).

Each step of 1 f-stop doubles the illumination, improving the performance.
Edge Location o for w x 4w

Information capacity C, and SNRi / pixel dB for w x 4w
c rectangle
45 max 35 rectangle 1
4 C
max .
e \'_a/‘___./‘ } w = 5 pixels < |
: m X205 w =1 pixel @
3 ;c Q o %
— ()] 1
g 2.5 g_é 25 g % 3
(&) = | e IS
i Cs z w=1pixel 5
| % 2 %02 § w=5pixels g,
1 Q 2 3
o
0.5 . . . .| -
More illumination —
0 15 0.1
-2 -1 0 1 2 -2 -1 o 1 2 2 Y 0 1 2
Exposure compensation f-stops Exposure compensation f-stops Exposure compensation f-stops
lmg~ 8, @ |
| ol
Exposure e r
compensation =2 )
f-stops
G3_eSFR_ISO160_excmp-2P 10601 34.tiff G3_eSFR_ISO160_excmpOP 1060137 tiff G3_eSFR_I50160_excrmp2P1060139.tiff
Exposure compensation from -2 to 2 f-stops (dark to light) o t t ®
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Summary

We have introduced new information-based image quality metrics, most
importantly information capacity, SNRi, and Location o, that are

* Closely related to each other, sharing the kernel, K(f) = MTF(f)/NPS(f),
* predict object and edge detection performance,

* Should be better than traditional sharpness and noise measurements for
predicting Machine Vision system performance (mAP and loU).

Information capacity C, can be used to specify camera performance.

Once the required value of C has been determined, a camera can be selected
with the minimum number of pixels needed to meet the requirement, and then
image processing (filtering) can be designed.

* Maximize speed
This should < minimize power consumption, and
* Minimize cost

s ®
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Notes

Signal averaging — N identical images can be averaged to improve the consistency (Signal-to-

Noise Ratio) of the results, which is improved by VN (3 dB for every doubling of N). Noise is
increased by VN to keep results unchanged.

To do (a few of many)

« Verify the correlation between image information metrics, especially SNRi and
Edge Location o, and Machine Vision/Artificial Intelligence (MV/AI)
performance metrics, such as Mean Average Precision (mAP) and Intersection
over Union (loU). Accuracy, speed, and power consumption are all critical.

« We look forward to working with researchers on this topic.
Grad students: There could be several PhD theses lurking here.

« Determine best practices for designing matched filters.
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Documentation for
image information
metrics is linked
from

www.imatest.com/solutions/image-information-metrics/

Please visit Imatest at booth at AutoSens booth 223.
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